Matches in SemOpenAlex for { <https://semopenalex.org/work/W2114535331> ?p ?o ?g. }
- W2114535331 endingPage "173" @default.
- W2114535331 startingPage "165" @default.
- W2114535331 abstract "Hyperspectral data sets contain useful information for characterizing vegetation canopies not previously available from multi-spectral data sources. However, to make full use of the information content one has to find ways for coping with the strong multi-collinearity in the data. The redundancy directly results from the fact that only a few variables effectively control the vegetation signature. This low dimensionality strongly contrasts with the often more than 100 spectral channels provided by modern spectroradiometers and through imaging spectroscopy. With this study we evaluated three different chemometric techniques specifically designed to deal with redundant (and small) data sets. In addition, a widely used 2-band vegetation index was chosen (NDVI) as a baseline approach. A multi-site and multi-date field campaign was conducted to acquire the necessary reference observations. On small subplots the total canopy chlorophyll content was measured and the corresponding canopy signature (450–2500 nm) was recorded (nobs = 42). Using this data set we investigated the predictive power and noise sensitivity of stepwise multiple linear regression (SMLR) and two ‘full spectrum’ methods: principal component regression (PCR) and partial least squares regression (PLSR). The NDVI was fitted to the canopy chlorophyll content using an exponential relation. For all techniques, a jackknife approach was used to obtain cross-validated statistics. The PLSR clearly outperformed all other techniques. PLSR gave a cross-validated RMSE of 51 mg m−2 (Rcv2=0.82) for canopy chlorophyll contents ranging between 38 and 475 mg m−2 (0.99 ≤ LAI ≤ 8.74 m2 m−2). The lowest accuracy was achieved using PCR (RMSEcv = 82 mg m−2 and Rcv2=0.57). The NDVI, even using chlorophyll optimized band settings, could not reach the accuracy of PLSR. Regarding the sensitivity to artificially created (white) noise, PCR showed some advantages, whereas SMLR was the most sensitive chemometric technique. For relatively small, highly multi-collinear data sets the use of partial least square regression is recommended. PLSR makes full use of the rich spectral information while being relatively insensitive to sensor noise. PLSR provides a regression model where the entire spectral information is taken – in a weighted form – into account. This method seems therefore much better adapted to deal with potentially confounding factors compared to any 2-band vegetation index which can only avoid the most harmful factor of variation." @default.
- W2114535331 created "2016-06-24" @default.
- W2114535331 creator A5005048474 @default.
- W2114535331 creator A5014728233 @default.
- W2114535331 creator A5040776652 @default.
- W2114535331 creator A5045314681 @default.
- W2114535331 date "2010-08-01" @default.
- W2114535331 modified "2023-10-18" @default.
- W2114535331 title "Comparative analysis of three chemometric techniques for the spectroradiometric assessment of canopy chlorophyll content in winter wheat" @default.
- W2114535331 cites W178779460 @default.
- W2114535331 cites W1965259267 @default.
- W2114535331 cites W1966035399 @default.
- W2114535331 cites W1966379566 @default.
- W2114535331 cites W1978160572 @default.
- W2114535331 cites W1978283906 @default.
- W2114535331 cites W1988233512 @default.
- W2114535331 cites W1991668437 @default.
- W2114535331 cites W1996601340 @default.
- W2114535331 cites W1999373227 @default.
- W2114535331 cites W1999606853 @default.
- W2114535331 cites W2000485836 @default.
- W2114535331 cites W2000911998 @default.
- W2114535331 cites W2003257017 @default.
- W2114535331 cites W2007939589 @default.
- W2114535331 cites W2014955600 @default.
- W2114535331 cites W2015799298 @default.
- W2114535331 cites W2018027183 @default.
- W2114535331 cites W2021211279 @default.
- W2114535331 cites W2022733067 @default.
- W2114535331 cites W2024925469 @default.
- W2114535331 cites W2030078894 @default.
- W2114535331 cites W2030476464 @default.
- W2114535331 cites W2034650341 @default.
- W2114535331 cites W2041139590 @default.
- W2114535331 cites W2043040083 @default.
- W2114535331 cites W2051275357 @default.
- W2114535331 cites W2052256290 @default.
- W2114535331 cites W2055842947 @default.
- W2114535331 cites W2056352756 @default.
- W2114535331 cites W2063623478 @default.
- W2114535331 cites W2066612219 @default.
- W2114535331 cites W2069921544 @default.
- W2114535331 cites W2071162510 @default.
- W2114535331 cites W2072518837 @default.
- W2114535331 cites W2073503722 @default.
- W2114535331 cites W2075015559 @default.
- W2114535331 cites W2075546765 @default.
- W2114535331 cites W2077863943 @default.
- W2114535331 cites W2079454091 @default.
- W2114535331 cites W2081179181 @default.
- W2114535331 cites W2083270190 @default.
- W2114535331 cites W2084334543 @default.
- W2114535331 cites W2089464686 @default.
- W2114535331 cites W2094124343 @default.
- W2114535331 cites W2094420085 @default.
- W2114535331 cites W2095598550 @default.
- W2114535331 cites W2097970470 @default.
- W2114535331 cites W2102273661 @default.
- W2114535331 cites W2103626949 @default.
- W2114535331 cites W2104487864 @default.
- W2114535331 cites W2109606373 @default.
- W2114535331 cites W2112472544 @default.
- W2114535331 cites W2115539456 @default.
- W2114535331 cites W2116635928 @default.
- W2114535331 cites W2116730904 @default.
- W2114535331 cites W2118791227 @default.
- W2114535331 cites W2119868411 @default.
- W2114535331 cites W2121025745 @default.
- W2114535331 cites W2121538471 @default.
- W2114535331 cites W2124121789 @default.
- W2114535331 cites W2124767529 @default.
- W2114535331 cites W2125459444 @default.
- W2114535331 cites W2127406961 @default.
- W2114535331 cites W2129449540 @default.
- W2114535331 cites W2131126673 @default.
- W2114535331 cites W2132299303 @default.
- W2114535331 cites W2133751300 @default.
- W2114535331 cites W2139211176 @default.
- W2114535331 cites W2139584183 @default.
- W2114535331 cites W2139925058 @default.
- W2114535331 cites W214276163 @default.
- W2114535331 cites W2143185985 @default.
- W2114535331 cites W2152634225 @default.
- W2114535331 cites W2158863190 @default.
- W2114535331 cites W2161815745 @default.
- W2114535331 cites W2166312616 @default.
- W2114535331 cites W2168508773 @default.
- W2114535331 cites W2168705867 @default.
- W2114535331 cites W2196579671 @default.
- W2114535331 cites W4211235314 @default.
- W2114535331 cites W4241607140 @default.
- W2114535331 cites W4249549421 @default.
- W2114535331 doi "https://doi.org/10.1016/j.compag.2010.05.006" @default.
- W2114535331 hasPublicationYear "2010" @default.
- W2114535331 type Work @default.
- W2114535331 sameAs 2114535331 @default.
- W2114535331 citedByCount "189" @default.
- W2114535331 countsByYear W21145353312012 @default.