Matches in SemOpenAlex for { <https://semopenalex.org/work/W2114557375> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W2114557375 abstract "Due to constraints in cost, power, and communication, losses often arise in large sensor networks. The sensor can be modeled as an output of a linear stochastic system with random losses of the sensor output samples. This paper considers the general problem of state estimation for jump linear systems where the discrete transitions are modeled as a Markov chain. Among other applications, this rich model can be used to analyze sensor networks. The sensor loss events are then modeled as Markov processes. Under the jump linear system model, many types of underlying losses can be easily considered, and the optimal estimator to be performed at the receiver in the presence of missing sensor data samples is given by a standard time-varying Kalman filter. We show that the asymptotic average estimation error variance converges and is given by a linear matrix inequality, which can be easily solved. Under this framework, any arbitrary Markov loss process can be modeled, and its average asymptotic error variance can be directly computed. We include a few illustrative examples including fixed-length burst errors, a two-state model, and partial losses due to multiple SNR states. Our analysis encompasses modeling discrete changes not only in the received data as stated above, but also in the underlying system. In the context of the lossy sensor model, the former allows for variation in sensor positioning, power control, and loss of data communications; the latter could allow for discrete changes in the dynamics of the variable monitored by the sensor. This freedom in modeling yields a tool that is potentially valuable in various scenarios in which entities that share information are subjected to challenging and time-varying network conditions." @default.
- W2114557375 created "2016-06-24" @default.
- W2114557375 creator A5000099903 @default.
- W2114557375 creator A5064518537 @default.
- W2114557375 creator A5073129946 @default.
- W2114557375 date "2004-01-01" @default.
- W2114557375 modified "2023-09-23" @default.
- W2114557375 title "Estimation from lossy sensor data" @default.
- W2114557375 cites W1535136082 @default.
- W2114557375 cites W2042710419 @default.
- W2114557375 cites W2045553828 @default.
- W2114557375 cites W2051556621 @default.
- W2114557375 cites W2053576035 @default.
- W2114557375 cites W2085381079 @default.
- W2114557375 cites W2102316513 @default.
- W2114557375 cites W2115981198 @default.
- W2114557375 cites W2124185885 @default.
- W2114557375 cites W2124458906 @default.
- W2114557375 cites W2125514280 @default.
- W2114557375 cites W2135095882 @default.
- W2114557375 cites W2141155058 @default.
- W2114557375 cites W2146169201 @default.
- W2114557375 cites W2150347243 @default.
- W2114557375 cites W2159554537 @default.
- W2114557375 cites W2164522996 @default.
- W2114557375 cites W2164598443 @default.
- W2114557375 cites W2170904935 @default.
- W2114557375 cites W3210839039 @default.
- W2114557375 cites W435730549 @default.
- W2114557375 cites W49460499 @default.
- W2114557375 cites W2169198816 @default.
- W2114557375 doi "https://doi.org/10.1145/984622.984659" @default.
- W2114557375 hasPublicationYear "2004" @default.
- W2114557375 type Work @default.
- W2114557375 sameAs 2114557375 @default.
- W2114557375 citedByCount "65" @default.
- W2114557375 countsByYear W21145573752012 @default.
- W2114557375 countsByYear W21145573752013 @default.
- W2114557375 countsByYear W21145573752015 @default.
- W2114557375 countsByYear W21145573752016 @default.
- W2114557375 countsByYear W21145573752017 @default.
- W2114557375 countsByYear W21145573752019 @default.
- W2114557375 countsByYear W21145573752021 @default.
- W2114557375 crossrefType "proceedings-article" @default.
- W2114557375 hasAuthorship W2114557375A5000099903 @default.
- W2114557375 hasAuthorship W2114557375A5064518537 @default.
- W2114557375 hasAuthorship W2114557375A5073129946 @default.
- W2114557375 hasConcept C127413603 @default.
- W2114557375 hasConcept C154945302 @default.
- W2114557375 hasConcept C165021410 @default.
- W2114557375 hasConcept C201995342 @default.
- W2114557375 hasConcept C41008148 @default.
- W2114557375 hasConcept C96250715 @default.
- W2114557375 hasConceptScore W2114557375C127413603 @default.
- W2114557375 hasConceptScore W2114557375C154945302 @default.
- W2114557375 hasConceptScore W2114557375C165021410 @default.
- W2114557375 hasConceptScore W2114557375C201995342 @default.
- W2114557375 hasConceptScore W2114557375C41008148 @default.
- W2114557375 hasConceptScore W2114557375C96250715 @default.
- W2114557375 hasLocation W21145573751 @default.
- W2114557375 hasOpenAccess W2114557375 @default.
- W2114557375 hasPrimaryLocation W21145573751 @default.
- W2114557375 hasRelatedWork W120713878 @default.
- W2114557375 hasRelatedWork W1553048240 @default.
- W2114557375 hasRelatedWork W1555023417 @default.
- W2114557375 hasRelatedWork W2022406843 @default.
- W2114557375 hasRelatedWork W2039551223 @default.
- W2114557375 hasRelatedWork W2157692945 @default.
- W2114557375 hasRelatedWork W2327217847 @default.
- W2114557375 hasRelatedWork W2362512594 @default.
- W2114557375 hasRelatedWork W3164098221 @default.
- W2114557375 hasRelatedWork W4299689850 @default.
- W2114557375 isParatext "false" @default.
- W2114557375 isRetracted "false" @default.
- W2114557375 magId "2114557375" @default.
- W2114557375 workType "article" @default.