Matches in SemOpenAlex for { <https://semopenalex.org/work/W2114652450> ?p ?o ?g. }
- W2114652450 endingPage "122" @default.
- W2114652450 startingPage "111" @default.
- W2114652450 abstract "A number of recent methods developed for automatic classification of multiunit neural activity rely on a Gaussian model of the variability of individual waveforms and the statistical methods of Gaussian mixture decomposition. Recent evidence has shown that the Gaussian model does not accurately capture the multivariate statistics of the waveform samples' distribution. We present further data demonstrating non-Gaussian statistics, and show that the multivariate t-distribution, a wide-tailed family of distributions, provides a significantly better fit to the true statistics. We introduce an adaptation of a new expectation-maximization based competitive mixture decomposition algorithm and show that it efficiently and reliably performs mixture decomposition of t-distributions. Our algorithm determines the number of units in multiunit neural recordings, even in the presence of significant noise contamination resulting from random threshold crossings and overlapping spikes." @default.
- W2114652450 created "2016-06-24" @default.
- W2114652450 creator A5028417315 @default.
- W2114652450 creator A5064988221 @default.
- W2114652450 creator A5083566496 @default.
- W2114652450 date "2003-08-01" @default.
- W2114652450 modified "2023-09-26" @default.
- W2114652450 title "Robust, automatic spike sorting using mixtures of multivariate t-distributions" @default.
- W2114652450 cites W1904024272 @default.
- W2114652450 cites W1966397619 @default.
- W2114652450 cites W1967667427 @default.
- W2114652450 cites W1972749840 @default.
- W2114652450 cites W1976551061 @default.
- W2114652450 cites W1985118798 @default.
- W2114652450 cites W1999567234 @default.
- W2114652450 cites W2015245929 @default.
- W2114652450 cites W2019554150 @default.
- W2114652450 cites W2025462430 @default.
- W2114652450 cites W2037717578 @default.
- W2114652450 cites W2038885294 @default.
- W2114652450 cites W2052673704 @default.
- W2114652450 cites W2053011627 @default.
- W2114652450 cites W2058623277 @default.
- W2114652450 cites W2074362761 @default.
- W2114652450 cites W2081168105 @default.
- W2114652450 cites W2082503527 @default.
- W2114652450 cites W2095675982 @default.
- W2114652450 cites W2102331052 @default.
- W2114652450 cites W2114747787 @default.
- W2114652450 cites W2118254160 @default.
- W2114652450 cites W2119795785 @default.
- W2114652450 cites W2125320262 @default.
- W2114652450 cites W2132549764 @default.
- W2114652450 cites W2137971377 @default.
- W2114652450 cites W2147636049 @default.
- W2114652450 cites W2161646208 @default.
- W2114652450 cites W2170459269 @default.
- W2114652450 cites W4211128380 @default.
- W2114652450 cites W4239719188 @default.
- W2114652450 doi "https://doi.org/10.1016/s0165-0270(03)00120-1" @default.
- W2114652450 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/12906941" @default.
- W2114652450 hasPublicationYear "2003" @default.
- W2114652450 type Work @default.
- W2114652450 sameAs 2114652450 @default.
- W2114652450 citedByCount "324" @default.
- W2114652450 countsByYear W21146524502012 @default.
- W2114652450 countsByYear W21146524502013 @default.
- W2114652450 countsByYear W21146524502014 @default.
- W2114652450 countsByYear W21146524502015 @default.
- W2114652450 countsByYear W21146524502016 @default.
- W2114652450 countsByYear W21146524502017 @default.
- W2114652450 countsByYear W21146524502018 @default.
- W2114652450 countsByYear W21146524502019 @default.
- W2114652450 countsByYear W21146524502020 @default.
- W2114652450 countsByYear W21146524502021 @default.
- W2114652450 countsByYear W21146524502022 @default.
- W2114652450 countsByYear W21146524502023 @default.
- W2114652450 crossrefType "journal-article" @default.
- W2114652450 hasAuthorship W2114652450A5028417315 @default.
- W2114652450 hasAuthorship W2114652450A5064988221 @default.
- W2114652450 hasAuthorship W2114652450A5083566496 @default.
- W2114652450 hasConcept C105795698 @default.
- W2114652450 hasConcept C111696304 @default.
- W2114652450 hasConcept C11413529 @default.
- W2114652450 hasConcept C121332964 @default.
- W2114652450 hasConcept C153180895 @default.
- W2114652450 hasConcept C154945302 @default.
- W2114652450 hasConcept C161584116 @default.
- W2114652450 hasConcept C163716315 @default.
- W2114652450 hasConcept C177384507 @default.
- W2114652450 hasConcept C182081679 @default.
- W2114652450 hasConcept C2777613131 @default.
- W2114652450 hasConcept C33923547 @default.
- W2114652450 hasConcept C41008148 @default.
- W2114652450 hasConcept C49781872 @default.
- W2114652450 hasConcept C61224824 @default.
- W2114652450 hasConcept C62520636 @default.
- W2114652450 hasConceptScore W2114652450C105795698 @default.
- W2114652450 hasConceptScore W2114652450C111696304 @default.
- W2114652450 hasConceptScore W2114652450C11413529 @default.
- W2114652450 hasConceptScore W2114652450C121332964 @default.
- W2114652450 hasConceptScore W2114652450C153180895 @default.
- W2114652450 hasConceptScore W2114652450C154945302 @default.
- W2114652450 hasConceptScore W2114652450C161584116 @default.
- W2114652450 hasConceptScore W2114652450C163716315 @default.
- W2114652450 hasConceptScore W2114652450C177384507 @default.
- W2114652450 hasConceptScore W2114652450C182081679 @default.
- W2114652450 hasConceptScore W2114652450C2777613131 @default.
- W2114652450 hasConceptScore W2114652450C33923547 @default.
- W2114652450 hasConceptScore W2114652450C41008148 @default.
- W2114652450 hasConceptScore W2114652450C49781872 @default.
- W2114652450 hasConceptScore W2114652450C61224824 @default.
- W2114652450 hasConceptScore W2114652450C62520636 @default.
- W2114652450 hasIssue "2" @default.
- W2114652450 hasLocation W21146524501 @default.
- W2114652450 hasLocation W21146524502 @default.
- W2114652450 hasOpenAccess W2114652450 @default.
- W2114652450 hasPrimaryLocation W21146524501 @default.