Matches in SemOpenAlex for { <https://semopenalex.org/work/W2114804960> ?p ?o ?g. }
- W2114804960 endingPage "12913" @default.
- W2114804960 startingPage "12901" @default.
- W2114804960 abstract "A time-dependent density functional theory (TDDFT) approach coupled with 14 different exchange-correlation functionals was used for the prediction of vertical excitation energies in zinc phthalocyanine (PcZn). In general, the TDDFT approach provides a more accurate description of both visible and ultraviolet regions of the UV−vis and magnetic circular dichroism (MCD) spectra of PcZn in comparison to the more popular semiempirical ZINDO/S and PM3 methods. It was found that the calculated vertical excitation energies of PcZn correlate with the amount of Hartree−Fock exchange involved in the exchange-correlation functional. The correlation was explained on the basis of the calculated difference in energy between occupied and unoccupied molecular orbitals. The influence of PcZn geometry, optimized using different exchange-correlation functionals, on the calculated vertical excitation energies in PcZn was found to be relatively small. The influence of solvents on the calculated vertical excitation energies in PcZn was considered for the first time using a polarized continuum model TDDFT (PCM-TDDFT) method and was found to be relatively small in excellent agreement with the experimental data. For all tested TDDFT and PCM-TDDFT cases, an assignment of the Q-band as an almost pure a1u (HOMO) → eg (LUMO) transition, initially suggested by Gouterman, was confirmed. Pure exchange-correlation functionals indicate the presence of six 1Eu states in the B-band region of the UV−vis spectrum of PcZn, while hybrid exchange-correlation functionals predict only five 1Eu states for the same energy envelope. The first two symmetry-forbidden n → π* transitions were predicted in the Q0-2 region and in the low-energy tail of the B-band, while the first two symmetry-allowed n → π* transitions were found within the B-band energy envelope when pure exchange-correlation functionals were used for TDDFT calculations. The presence of a symmetry-forbidden but vibronically allowed n → π* transition in the Q0-2 spectral envelope explains the long-time controversy between the experimentally observed low-intensity transition in the Q0-2 region and previous semiempirical and TDDFT calculations, which were unable to predict any electronic transitions in this area. To prove the conceptual possibility of the presence of several degenerate 1Eu states in the B-band region of PcZn, room-temperature UV−vis and MCD spectra of zinc tetra-tert-butylphthalocyanine (PctZn) in non-coordinating solvents were recorded and analyzed using band deconvolution analysis. It was found that the B-band region of the UV−vis and MCD spectra of PctZn can be easily deconvoluted using six MCD Faraday A-terms and two MCD Faraday B-terms with energies close to those predicted by TDDFT calculations for 1Eu and 1A2u excited states, respectively. Such a good agreement between theory and experiment clearly indicates the possibility of employing a TDDFT approach for the accurate prediction of vertical excitation energies in phthalocyanines within a large energy range." @default.
- W2114804960 created "2016-06-24" @default.
- W2114804960 creator A5035224025 @default.
- W2114804960 creator A5059700931 @default.
- W2114804960 creator A5071708486 @default.
- W2114804960 creator A5072274752 @default.
- W2114804960 creator A5077895432 @default.
- W2114804960 date "2007-11-16" @default.
- W2114804960 modified "2023-10-02" @default.
- W2114804960 title "Influence of Molecular Geometry, Exchange-Correlation Functional, and Solvent Effects in the Modeling of Vertical Excitation Energies in Phthalocyanines Using Time-Dependent Density Functional Theory (TDDFT) and Polarized Continuum Model TDDFT Methods: Can Modern Computational Chemistry Methods Explain Experimental Controversies?" @default.
- W2114804960 cites W1526404606 @default.
- W2114804960 cites W1604166409 @default.
- W2114804960 cites W1609334051 @default.
- W2114804960 cites W1963600566 @default.
- W2114804960 cites W1968158610 @default.
- W2114804960 cites W1970888035 @default.
- W2114804960 cites W1972564404 @default.
- W2114804960 cites W1974570397 @default.
- W2114804960 cites W1975708211 @default.
- W2114804960 cites W1977160384 @default.
- W2114804960 cites W1979375661 @default.
- W2114804960 cites W1979825106 @default.
- W2114804960 cites W1981368803 @default.
- W2114804960 cites W1981752998 @default.
- W2114804960 cites W1990139741 @default.
- W2114804960 cites W1994671348 @default.
- W2114804960 cites W1997151511 @default.
- W2114804960 cites W2000049430 @default.
- W2114804960 cites W2002168224 @default.
- W2114804960 cites W2003805512 @default.
- W2114804960 cites W2004137910 @default.
- W2114804960 cites W2013219170 @default.
- W2114804960 cites W2020284436 @default.
- W2114804960 cites W2022637606 @default.
- W2114804960 cites W2029057693 @default.
- W2114804960 cites W2030867676 @default.
- W2114804960 cites W2035097673 @default.
- W2114804960 cites W2044843592 @default.
- W2114804960 cites W2047644723 @default.
- W2114804960 cites W2050056663 @default.
- W2114804960 cites W2050742863 @default.
- W2114804960 cites W2060496760 @default.
- W2114804960 cites W2070517413 @default.
- W2114804960 cites W2084135044 @default.
- W2114804960 cites W2086821139 @default.
- W2114804960 cites W2086957099 @default.
- W2114804960 cites W2088397446 @default.
- W2114804960 cites W2092062573 @default.
- W2114804960 cites W2095474273 @default.
- W2114804960 cites W2116682481 @default.
- W2114804960 cites W2119625859 @default.
- W2114804960 cites W2951790603 @default.
- W2114804960 cites W3004951039 @default.
- W2114804960 doi "https://doi.org/10.1021/jp0759731" @default.
- W2114804960 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/18004829" @default.
- W2114804960 hasPublicationYear "2007" @default.
- W2114804960 type Work @default.
- W2114804960 sameAs 2114804960 @default.
- W2114804960 citedByCount "142" @default.
- W2114804960 countsByYear W21148049602012 @default.
- W2114804960 countsByYear W21148049602013 @default.
- W2114804960 countsByYear W21148049602014 @default.
- W2114804960 countsByYear W21148049602015 @default.
- W2114804960 countsByYear W21148049602016 @default.
- W2114804960 countsByYear W21148049602017 @default.
- W2114804960 countsByYear W21148049602018 @default.
- W2114804960 countsByYear W21148049602019 @default.
- W2114804960 countsByYear W21148049602020 @default.
- W2114804960 countsByYear W21148049602021 @default.
- W2114804960 countsByYear W21148049602022 @default.
- W2114804960 countsByYear W21148049602023 @default.
- W2114804960 crossrefType "journal-article" @default.
- W2114804960 hasAuthorship W2114804960A5035224025 @default.
- W2114804960 hasAuthorship W2114804960A5059700931 @default.
- W2114804960 hasAuthorship W2114804960A5071708486 @default.
- W2114804960 hasAuthorship W2114804960A5072274752 @default.
- W2114804960 hasAuthorship W2114804960A5077895432 @default.
- W2114804960 hasConcept C121332964 @default.
- W2114804960 hasConcept C132439834 @default.
- W2114804960 hasConcept C147597530 @default.
- W2114804960 hasConcept C152365726 @default.
- W2114804960 hasConcept C178790620 @default.
- W2114804960 hasConcept C184779094 @default.
- W2114804960 hasConcept C185592680 @default.
- W2114804960 hasConcept C20853536 @default.
- W2114804960 hasConcept C2776122248 @default.
- W2114804960 hasConcept C2780471494 @default.
- W2114804960 hasConcept C41999313 @default.
- W2114804960 hasConcept C62520636 @default.
- W2114804960 hasConcept C83581075 @default.
- W2114804960 hasConceptScore W2114804960C121332964 @default.
- W2114804960 hasConceptScore W2114804960C132439834 @default.
- W2114804960 hasConceptScore W2114804960C147597530 @default.
- W2114804960 hasConceptScore W2114804960C152365726 @default.
- W2114804960 hasConceptScore W2114804960C178790620 @default.
- W2114804960 hasConceptScore W2114804960C184779094 @default.
- W2114804960 hasConceptScore W2114804960C185592680 @default.
- W2114804960 hasConceptScore W2114804960C20853536 @default.