Matches in SemOpenAlex for { <https://semopenalex.org/work/W2114863722> ?p ?o ?g. }
- W2114863722 endingPage "1680" @default.
- W2114863722 startingPage "1673" @default.
- W2114863722 abstract "Background An estimated 2·5 billion people are at risk of dengue. Incidence of dengue is especially high in resource-constrained countries, where control relies mainly on insecticides targeted at larval or adult mosquitoes. We did epidemiological and economic assessments of different vector control strategies. Methods We developed a dynamic model of dengue transmission that assesses the evolution of insecticide resistance and immunity in the human population, thus allowing for long-term evolutionary and immunological effects of decreased dengue transmission. We measured the dengue health burden in terms of disability-adjusted life-years (DALYs) lost. We did a cost-effectiveness analysis of 43 insecticide-based vector control strategies, including strategies targeted at adult and larval stages, at varying efficacies (high-efficacy [90% mortality], medium-efficacy [60% mortality], and low-efficacy [30% mortality]) and yearly application frequencies (one to six applications). To assess the effect of parameter uncertainty on the results, we did a probabilistic sensitivity analysis and a threshold analysis. Findings All interventions caused the emergence of insecticide resistance, which, with the loss of herd immunity, will increase the magnitude of future dengue epidemics. In our model, one or more applications of high-efficacy larval control reduced dengue burden for up to 2 years, whereas three or more applications of adult vector control reduced dengue burden for up to 4 years. The incremental cost-effectiveness ratios of the strategies for two high-efficacy adult vector control applications per year was US$615 per DALY saved and for six high-efficacy adult vector control applications per year was $1267 per DALY saved. Sensitivity analysis showed that if the cost of adult control was more than 8·2 times the cost of larval control then all strategies based on adult control became dominated. Interpretation Six high-efficacy adult vector control applications per year has a cost-effectiveness ratio that will probably meet WHO's standard for a cost-effective or very cost-effective intervention. Year-round larval control can be counterproductive, exacerbating epidemics in later years because of evolution of insecticide resistance and loss of herd immunity. We suggest the reassessment of vector control policies that are based on larval control only. Funding The Fulbright Programme, CAPES (Brazilian federal agency for post-graduate education), the Miriam Burnett trust, and the Notsew Orm Sands Foundation. An estimated 2·5 billion people are at risk of dengue. Incidence of dengue is especially high in resource-constrained countries, where control relies mainly on insecticides targeted at larval or adult mosquitoes. We did epidemiological and economic assessments of different vector control strategies. We developed a dynamic model of dengue transmission that assesses the evolution of insecticide resistance and immunity in the human population, thus allowing for long-term evolutionary and immunological effects of decreased dengue transmission. We measured the dengue health burden in terms of disability-adjusted life-years (DALYs) lost. We did a cost-effectiveness analysis of 43 insecticide-based vector control strategies, including strategies targeted at adult and larval stages, at varying efficacies (high-efficacy [90% mortality], medium-efficacy [60% mortality], and low-efficacy [30% mortality]) and yearly application frequencies (one to six applications). To assess the effect of parameter uncertainty on the results, we did a probabilistic sensitivity analysis and a threshold analysis. All interventions caused the emergence of insecticide resistance, which, with the loss of herd immunity, will increase the magnitude of future dengue epidemics. In our model, one or more applications of high-efficacy larval control reduced dengue burden for up to 2 years, whereas three or more applications of adult vector control reduced dengue burden for up to 4 years. The incremental cost-effectiveness ratios of the strategies for two high-efficacy adult vector control applications per year was US$615 per DALY saved and for six high-efficacy adult vector control applications per year was $1267 per DALY saved. Sensitivity analysis showed that if the cost of adult control was more than 8·2 times the cost of larval control then all strategies based on adult control became dominated. Six high-efficacy adult vector control applications per year has a cost-effectiveness ratio that will probably meet WHO's standard for a cost-effective or very cost-effective intervention. Year-round larval control can be counterproductive, exacerbating epidemics in later years because of evolution of insecticide resistance and loss of herd immunity. We suggest the reassessment of vector control policies that are based on larval control only." @default.
- W2114863722 created "2016-06-24" @default.
- W2114863722 creator A5031463423 @default.
- W2114863722 creator A5031920585 @default.
- W2114863722 creator A5062889731 @default.
- W2114863722 creator A5068889155 @default.
- W2114863722 creator A5073819679 @default.
- W2114863722 date "2011-05-01" @default.
- W2114863722 modified "2023-10-16" @default.
- W2114863722 title "Dengue vector control strategies in an urban setting: an economic modelling assessment" @default.
- W2114863722 cites W1527856663 @default.
- W2114863722 cites W1802923049 @default.
- W2114863722 cites W1959981670 @default.
- W2114863722 cites W1965369546 @default.
- W2114863722 cites W1989999834 @default.
- W2114863722 cites W1999722412 @default.
- W2114863722 cites W2020599309 @default.
- W2114863722 cites W2028563467 @default.
- W2114863722 cites W2030142520 @default.
- W2114863722 cites W2032348127 @default.
- W2114863722 cites W2043066204 @default.
- W2114863722 cites W2045211613 @default.
- W2114863722 cites W2050324953 @default.
- W2114863722 cites W2055557610 @default.
- W2114863722 cites W2057541661 @default.
- W2114863722 cites W2069172646 @default.
- W2114863722 cites W2069820665 @default.
- W2114863722 cites W2102826951 @default.
- W2114863722 cites W2110728776 @default.
- W2114863722 cites W21149996 @default.
- W2114863722 cites W2117828651 @default.
- W2114863722 cites W2124100477 @default.
- W2114863722 cites W2130487806 @default.
- W2114863722 cites W2133250947 @default.
- W2114863722 cites W2142566180 @default.
- W2114863722 cites W2151115521 @default.
- W2114863722 cites W2153885085 @default.
- W2114863722 cites W2158335699 @default.
- W2114863722 cites W2180490208 @default.
- W2114863722 cites W2794755280 @default.
- W2114863722 cites W4236225085 @default.
- W2114863722 doi "https://doi.org/10.1016/s0140-6736(11)60246-8" @default.
- W2114863722 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3409589" @default.
- W2114863722 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21546076" @default.
- W2114863722 hasPublicationYear "2011" @default.
- W2114863722 type Work @default.
- W2114863722 sameAs 2114863722 @default.
- W2114863722 citedByCount "127" @default.
- W2114863722 countsByYear W21148637222012 @default.
- W2114863722 countsByYear W21148637222013 @default.
- W2114863722 countsByYear W21148637222014 @default.
- W2114863722 countsByYear W21148637222015 @default.
- W2114863722 countsByYear W21148637222016 @default.
- W2114863722 countsByYear W21148637222017 @default.
- W2114863722 countsByYear W21148637222018 @default.
- W2114863722 countsByYear W21148637222019 @default.
- W2114863722 countsByYear W21148637222020 @default.
- W2114863722 countsByYear W21148637222021 @default.
- W2114863722 countsByYear W21148637222022 @default.
- W2114863722 countsByYear W21148637222023 @default.
- W2114863722 crossrefType "journal-article" @default.
- W2114863722 hasAuthorship W2114863722A5031463423 @default.
- W2114863722 hasAuthorship W2114863722A5031920585 @default.
- W2114863722 hasAuthorship W2114863722A5062889731 @default.
- W2114863722 hasAuthorship W2114863722A5068889155 @default.
- W2114863722 hasAuthorship W2114863722A5073819679 @default.
- W2114863722 hasBestOaLocation W21148637222 @default.
- W2114863722 hasConcept C106192422 @default.
- W2114863722 hasConcept C144024400 @default.
- W2114863722 hasConcept C149923435 @default.
- W2114863722 hasConcept C203014093 @default.
- W2114863722 hasConcept C2779308166 @default.
- W2114863722 hasConcept C2779635636 @default.
- W2114863722 hasConcept C2908647359 @default.
- W2114863722 hasConcept C41008148 @default.
- W2114863722 hasConcept C533803919 @default.
- W2114863722 hasConcept C71924100 @default.
- W2114863722 hasConcept C761482 @default.
- W2114863722 hasConcept C76155785 @default.
- W2114863722 hasConcept C99454951 @default.
- W2114863722 hasConceptScore W2114863722C106192422 @default.
- W2114863722 hasConceptScore W2114863722C144024400 @default.
- W2114863722 hasConceptScore W2114863722C149923435 @default.
- W2114863722 hasConceptScore W2114863722C203014093 @default.
- W2114863722 hasConceptScore W2114863722C2779308166 @default.
- W2114863722 hasConceptScore W2114863722C2779635636 @default.
- W2114863722 hasConceptScore W2114863722C2908647359 @default.
- W2114863722 hasConceptScore W2114863722C41008148 @default.
- W2114863722 hasConceptScore W2114863722C533803919 @default.
- W2114863722 hasConceptScore W2114863722C71924100 @default.
- W2114863722 hasConceptScore W2114863722C761482 @default.
- W2114863722 hasConceptScore W2114863722C76155785 @default.
- W2114863722 hasConceptScore W2114863722C99454951 @default.
- W2114863722 hasIssue "9778" @default.
- W2114863722 hasLocation W21148637221 @default.
- W2114863722 hasLocation W21148637222 @default.
- W2114863722 hasLocation W21148637223 @default.
- W2114863722 hasLocation W21148637224 @default.