Matches in SemOpenAlex for { <https://semopenalex.org/work/W2114923340> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W2114923340 abstract "Basing cluster analysis on Gaussian mixture models is a powerful approach. In this context, two commonly used maximum likelihood approaches have been proposed: the mixture approach and the classification approach. Loosely speaking, the mixture approach aims to maximize the likelihood over the mixture parameters, whereas the classification approach aims to maximize the likelihood over the mixture parameters and over the identifying labels of the mixture component origin for each point. This paper addresses the problem of taking into account data imprecision in the mixture model clustering of binned data. Binning (or grouping) data is common in data analysis and machine learning. Recently, we developed an original method which fitted the binning data procedure to imprecise data. The idea was to model imprecise data by multivariate uncertainty zones and to assign each uncertainty zone to several bins with proportions proportional to its overlapping volumes with the bins. The experimental results of this method when it was associated with the binned-EM algorithm (mixture approach) were encouraging. However, the binned-EM algorithm has the disadvantage of being sometimes computationally expensive. To overcome this problem, we propose in this paper to apply our binning data procedure with the classification approach based on bin-EM-CEM algorithm which is much faster than the binned-EM algorithm. The paper concludes with a brief description of a flaw diagnosis application using acoustic emission." @default.
- W2114923340 created "2016-06-24" @default.
- W2114923340 creator A5088271064 @default.
- W2114923340 date "2006-10-24" @default.
- W2114923340 modified "2023-09-27" @default.
- W2114923340 title "Mixture model clustering of binned uncertain data: the classification approach" @default.
- W2114923340 cites W1861611946 @default.
- W2114923340 cites W1975120776 @default.
- W2114923340 cites W2021850646 @default.
- W2114923340 cites W2059279601 @default.
- W2114923340 cites W2119920571 @default.
- W2114923340 cites W2144679084 @default.
- W2114923340 cites W2156655440 @default.
- W2114923340 cites W2914885528 @default.
- W2114923340 cites W4246532143 @default.
- W2114923340 doi "https://doi.org/10.1109/ictta.2006.1684631" @default.
- W2114923340 hasPublicationYear "2006" @default.
- W2114923340 type Work @default.
- W2114923340 sameAs 2114923340 @default.
- W2114923340 citedByCount "4" @default.
- W2114923340 countsByYear W21149233402012 @default.
- W2114923340 countsByYear W21149233402013 @default.
- W2114923340 countsByYear W21149233402016 @default.
- W2114923340 crossrefType "proceedings-article" @default.
- W2114923340 hasAuthorship W2114923340A5088271064 @default.
- W2114923340 hasConcept C124101348 @default.
- W2114923340 hasConcept C153180895 @default.
- W2114923340 hasConcept C154945302 @default.
- W2114923340 hasConcept C41008148 @default.
- W2114923340 hasConcept C61224824 @default.
- W2114923340 hasConcept C67186912 @default.
- W2114923340 hasConcept C73555534 @default.
- W2114923340 hasConcept C77088390 @default.
- W2114923340 hasConceptScore W2114923340C124101348 @default.
- W2114923340 hasConceptScore W2114923340C153180895 @default.
- W2114923340 hasConceptScore W2114923340C154945302 @default.
- W2114923340 hasConceptScore W2114923340C41008148 @default.
- W2114923340 hasConceptScore W2114923340C61224824 @default.
- W2114923340 hasConceptScore W2114923340C67186912 @default.
- W2114923340 hasConceptScore W2114923340C73555534 @default.
- W2114923340 hasConceptScore W2114923340C77088390 @default.
- W2114923340 hasLocation W21149233401 @default.
- W2114923340 hasLocation W21149233402 @default.
- W2114923340 hasOpenAccess W2114923340 @default.
- W2114923340 hasPrimaryLocation W21149233401 @default.
- W2114923340 hasRelatedWork W1562793155 @default.
- W2114923340 hasRelatedWork W1894289715 @default.
- W2114923340 hasRelatedWork W2033914206 @default.
- W2114923340 hasRelatedWork W2076520961 @default.
- W2114923340 hasRelatedWork W2146076056 @default.
- W2114923340 hasRelatedWork W2783504828 @default.
- W2114923340 hasRelatedWork W2954309397 @default.
- W2114923340 hasRelatedWork W3127249466 @default.
- W2114923340 hasRelatedWork W3129173165 @default.
- W2114923340 hasRelatedWork W4380987856 @default.
- W2114923340 isParatext "false" @default.
- W2114923340 isRetracted "false" @default.
- W2114923340 magId "2114923340" @default.
- W2114923340 workType "article" @default.