Matches in SemOpenAlex for { <https://semopenalex.org/work/W2115030786> ?p ?o ?g. }
Showing items 1 to 56 of
56
with 100 items per page.
- W2115030786 abstract "With modern focus on LiDAR technology the amount of topographic data, in the form of massive point clouds, has increased dramatically. Furthermore, due to the popularity of LiDAR, repeated surveys of the same areas are becoming more common. This trend will only increase as topographic changes prompt surveys over already scanned terrain, in which case we obtain large spatio-temporal data sets.In dynamic terrains, such as coastal regions, such spatio-temporal data can offer interesting insight into how the terrain changes over time. An initial step in the analysis of such data is to create a digital elevation model representing the terrain over time. In the case of spatio-temporal data sets those models often represent elevation on a 3D volumetric grid. This involves interpolating the elevation of LiDAR points on these grid points. In this paper we show how to efficiently perform natural neighbor interpolation over a 3D volumetric grid. Using a graphics processing unit (GPU), we describe different algorithms to attain speed and GPU-memory trade-offs. Our algorithm extends to higher dimensions. Our experimental results demonstrate that the algorithm is efficient and scalable. Categories and Subject." @default.
- W2115030786 created "2016-06-24" @default.
- W2115030786 creator A5028065986 @default.
- W2115030786 creator A5033884416 @default.
- W2115030786 creator A5058649592 @default.
- W2115030786 creator A5070466932 @default.
- W2115030786 creator A5080988309 @default.
- W2115030786 date "2011-11-01" @default.
- W2115030786 modified "2023-09-23" @default.
- W2115030786 title "TerraNNI" @default.
- W2115030786 cites W1517366800 @default.
- W2115030786 cites W1573124210 @default.
- W2115030786 cites W1964744520 @default.
- W2115030786 cites W2057090164 @default.
- W2115030786 cites W2066801691 @default.
- W2115030786 cites W2073751737 @default.
- W2115030786 cites W2098457129 @default.
- W2115030786 cites W2108157916 @default.
- W2115030786 cites W2153504150 @default.
- W2115030786 cites W2232710831 @default.
- W2115030786 cites W2502759836 @default.
- W2115030786 cites W4214494916 @default.
- W2115030786 cites W4298289309 @default.
- W2115030786 doi "https://doi.org/10.1145/2093973.2093984" @default.
- W2115030786 hasPublicationYear "2011" @default.
- W2115030786 type Work @default.
- W2115030786 sameAs 2115030786 @default.
- W2115030786 citedByCount "6" @default.
- W2115030786 countsByYear W21150307862012 @default.
- W2115030786 countsByYear W21150307862015 @default.
- W2115030786 countsByYear W21150307862017 @default.
- W2115030786 crossrefType "proceedings-article" @default.
- W2115030786 hasAuthorship W2115030786A5028065986 @default.
- W2115030786 hasAuthorship W2115030786A5033884416 @default.
- W2115030786 hasAuthorship W2115030786A5058649592 @default.
- W2115030786 hasAuthorship W2115030786A5070466932 @default.
- W2115030786 hasAuthorship W2115030786A5080988309 @default.
- W2115030786 hasConcept C41008148 @default.
- W2115030786 hasConceptScore W2115030786C41008148 @default.
- W2115030786 hasLocation W21150307861 @default.
- W2115030786 hasOpenAccess W2115030786 @default.
- W2115030786 hasPrimaryLocation W21150307861 @default.
- W2115030786 hasRelatedWork W2093578348 @default.
- W2115030786 hasRelatedWork W2350741829 @default.
- W2115030786 hasRelatedWork W2358668433 @default.
- W2115030786 hasRelatedWork W2376932109 @default.
- W2115030786 hasRelatedWork W2382290278 @default.
- W2115030786 hasRelatedWork W2390279801 @default.
- W2115030786 hasRelatedWork W2748952813 @default.
- W2115030786 hasRelatedWork W2766271392 @default.
- W2115030786 hasRelatedWork W2899084033 @default.
- W2115030786 hasRelatedWork W3004735627 @default.
- W2115030786 isParatext "false" @default.
- W2115030786 isRetracted "false" @default.
- W2115030786 magId "2115030786" @default.
- W2115030786 workType "article" @default.