Matches in SemOpenAlex for { <https://semopenalex.org/work/W2115390542> ?p ?o ?g. }
- W2115390542 endingPage "2559" @default.
- W2115390542 startingPage "2547" @default.
- W2115390542 abstract "Abstract. Water resources are essential to the ecosystem and social economy in the desert and oasis of the arid Tarim River basin, northwestern China, and expected to be vulnerable to climate change. It has been demonstrated that regional climate models (RCMs) provide more reliable results for a regional impact study of climate change (e.g., on water resources) than general circulation models (GCMs). However, due to their considerable bias it is still necessary to apply bias correction before they are used for water resources research. In this paper, after a sensitivity analysis on input meteorological variables based on the Sobol' method, we compared five precipitation correction methods and three temperature correction methods in downscaling RCM simulations applied over the Kaidu River basin, one of the headwaters of the Tarim River basin. Precipitation correction methods applied include linear scaling (LS), local intensity scaling (LOCI), power transformation (PT), distribution mapping (DM) and quantile mapping (QM), while temperature correction methods are LS, variance scaling (VARI) and DM. The corrected precipitation and temperature were compared to the observed meteorological data, prior to being used as meteorological inputs of a distributed hydrologic model to study their impacts on streamflow. The results show (1) streamflows are sensitive to precipitation, temperature and solar radiation but not to relative humidity and wind speed; (2) raw RCM simulations are heavily biased from observed meteorological data, and its use for streamflow simulations results in large biases from observed streamflow, and all bias correction methods effectively improved these simulations; (3) for precipitation, PT and QM methods performed equally best in correcting the frequency-based indices (e.g., standard deviation, percentile values) while the LOCI method performed best in terms of the time-series-based indices (e.g., Nash–Sutcliffe coefficient, R2); (4) for temperature, all correction methods performed equally well in correcting raw temperature; and (5) for simulated streamflow, precipitation correction methods have more significant influence than temperature correction methods and the performances of streamflow simulations are consistent with those of corrected precipitation; i.e., the PT and QM methods performed equally best in correcting flow duration curve and peak flow while the LOCI method performed best in terms of the time-series-based indices. The case study is for an arid area in China based on a specific RCM and hydrologic model, but the methodology and some results can be applied to other areas and models." @default.
- W2115390542 created "2016-06-24" @default.
- W2115390542 creator A5008257477 @default.
- W2115390542 creator A5011089420 @default.
- W2115390542 creator A5037677246 @default.
- W2115390542 creator A5047918738 @default.
- W2115390542 date "2015-06-02" @default.
- W2115390542 modified "2023-10-12" @default.
- W2115390542 title "Comparing bias correction methods in downscaling meteorological variables for a hydrologic impact study in an arid area in China" @default.
- W2115390542 cites W1602738779 @default.
- W2115390542 cites W1885115366 @default.
- W2115390542 cites W1917061602 @default.
- W2115390542 cites W1983724666 @default.
- W2115390542 cites W1988890060 @default.
- W2115390542 cites W1989959107 @default.
- W2115390542 cites W1990373075 @default.
- W2115390542 cites W1993389451 @default.
- W2115390542 cites W1998264544 @default.
- W2115390542 cites W1998360908 @default.
- W2115390542 cites W2000383402 @default.
- W2115390542 cites W2002340384 @default.
- W2115390542 cites W2011382719 @default.
- W2115390542 cites W2012402158 @default.
- W2115390542 cites W2014953946 @default.
- W2115390542 cites W2017559255 @default.
- W2115390542 cites W2022584002 @default.
- W2115390542 cites W2027508270 @default.
- W2115390542 cites W2030504740 @default.
- W2115390542 cites W2033904036 @default.
- W2115390542 cites W2034174587 @default.
- W2115390542 cites W2038294068 @default.
- W2115390542 cites W2050320017 @default.
- W2115390542 cites W2050874362 @default.
- W2115390542 cites W2052138108 @default.
- W2115390542 cites W2061857023 @default.
- W2115390542 cites W2064908124 @default.
- W2115390542 cites W2073491504 @default.
- W2115390542 cites W2076132436 @default.
- W2115390542 cites W2080431423 @default.
- W2115390542 cites W2081580680 @default.
- W2115390542 cites W2082065802 @default.
- W2115390542 cites W2082276242 @default.
- W2115390542 cites W2084557503 @default.
- W2115390542 cites W2091918738 @default.
- W2115390542 cites W2101589741 @default.
- W2115390542 cites W2107088955 @default.
- W2115390542 cites W2110630269 @default.
- W2115390542 cites W2117355623 @default.
- W2115390542 cites W2130408869 @default.
- W2115390542 cites W2130997496 @default.
- W2115390542 cites W2172191993 @default.
- W2115390542 cites W2179874655 @default.
- W2115390542 cites W2352554431 @default.
- W2115390542 cites W3147714055 @default.
- W2115390542 doi "https://doi.org/10.5194/hess-19-2547-2015" @default.
- W2115390542 hasPublicationYear "2015" @default.
- W2115390542 type Work @default.
- W2115390542 sameAs 2115390542 @default.
- W2115390542 citedByCount "319" @default.
- W2115390542 countsByYear W21153905422016 @default.
- W2115390542 countsByYear W21153905422017 @default.
- W2115390542 countsByYear W21153905422018 @default.
- W2115390542 countsByYear W21153905422019 @default.
- W2115390542 countsByYear W21153905422020 @default.
- W2115390542 countsByYear W21153905422021 @default.
- W2115390542 countsByYear W21153905422022 @default.
- W2115390542 countsByYear W21153905422023 @default.
- W2115390542 crossrefType "journal-article" @default.
- W2115390542 hasAuthorship W2115390542A5008257477 @default.
- W2115390542 hasAuthorship W2115390542A5011089420 @default.
- W2115390542 hasAuthorship W2115390542A5037677246 @default.
- W2115390542 hasAuthorship W2115390542A5047918738 @default.
- W2115390542 hasBestOaLocation W21153905421 @default.
- W2115390542 hasConcept C105795698 @default.
- W2115390542 hasConcept C107054158 @default.
- W2115390542 hasConcept C111368507 @default.
- W2115390542 hasConcept C118671147 @default.
- W2115390542 hasConcept C126645576 @default.
- W2115390542 hasConcept C127313418 @default.
- W2115390542 hasConcept C132651083 @default.
- W2115390542 hasConcept C150772632 @default.
- W2115390542 hasConcept C151730666 @default.
- W2115390542 hasConcept C153294291 @default.
- W2115390542 hasConcept C153823671 @default.
- W2115390542 hasConcept C161067210 @default.
- W2115390542 hasConcept C168754636 @default.
- W2115390542 hasConcept C18903297 @default.
- W2115390542 hasConcept C205649164 @default.
- W2115390542 hasConcept C33923547 @default.
- W2115390542 hasConcept C39432304 @default.
- W2115390542 hasConcept C41156917 @default.
- W2115390542 hasConcept C49204034 @default.
- W2115390542 hasConcept C53739315 @default.
- W2115390542 hasConcept C58640448 @default.
- W2115390542 hasConcept C86803240 @default.
- W2115390542 hasConceptScore W2115390542C105795698 @default.
- W2115390542 hasConceptScore W2115390542C107054158 @default.
- W2115390542 hasConceptScore W2115390542C111368507 @default.