Matches in SemOpenAlex for { <https://semopenalex.org/work/W2115429905> ?p ?o ?g. }
- W2115429905 endingPage "591" @default.
- W2115429905 startingPage "577" @default.
- W2115429905 abstract "Abstract. Drained thaw lake basins (DTLB's) are the dominant land form of the Arctic Coastal Plain in northern Alaska. The presence of continuous permafrost prevents drainage and so water tables generally remain close to the soil surface, creating saturated, suboxic soil conditions. However, ice wedge polygons produce microtopographic variation in these landscapes, with raised areas such as polygon rims creating more oxic microenvironments. The peat soils in this ecosystem store large amounts of organic carbon which is vulnerable to loss as arctic regions continue to rapidly warm, and so there is great motivation to understand the controls over microbial activity in these complex landscapes. Here we report the effects of experimental flooding, along with seasonal and spatial variation in soil chemistry and microbial activity in a DTLB. The flooding treatment generally mirrored the effects of natural landscape variation in water-table height due to microtopography. The flooded portion of the basin had lower dissolved oxygen, lower oxidation-reduction potential (ORP) and higher pH, as did lower elevation areas throughout the entire basin. Similarly, soil pore water concentrations of organic carbon and aromatic compounds were higher in flooded and low elevation areas. Dissolved ferric iron (Fe(III)) concentrations were higher in low elevation areas and responded to the flooding treatment in low areas, only. The high concentrations of soluble Fe(III) in soil pore water were explained by the presence of siderophores, which were much more concentrated in low elevation areas. All the aforementioned variables were correlated, showing that Fe(III) is solubilized in response to anoxic conditions. Dissolved carbon dioxide (CO2) and methane (CH4) concentrations were higher in low elevation areas, but showed only subtle and/or seasonally dependent effects of flooding. In anaerobic laboratory incubations, more CH4 was produced by soils from low and flooded areas, whereas anaerobic CO2 production only responded to flooding in high elevation areas. Seasonal changes in the oxidation state of solid phase Fe minerals showed that net Fe reduction occurred, especially in topographically low areas. The effects of Fe reduction were also seen in the topographic patterns of pH, as protons were consumed where this process was prevalent. This suite of results can all be attributed to the effect of water table on oxygen availability: flooded conditions promote anoxia, stimulating dissolution and reduction of Fe(III), and to some extent, methanogenesis. However, two lines of evidence indicated the inhibition of methanogenesis by alternative e- acceptors such as Fe(III) and humic substances: (1) ratios of CO2:CH4 evolved from anaerobic soil incubations and dissolved in soil pore water were high; (2) CH4 concentrations were negatively correlated with the oxidation state of the soluble Fe pool in both topographically high and low areas. A second set of results could be explained by increased soil temperature in the flooding treatment, which presumably arose from the increased thermal conductivity of the soil surface: higher N mineralization rates and dissolved P concentrations were observed in flooded areas. Overall, these results could have implications for C and nutrient cycling in high Arctic areas where warming and flooding are likely consequences of climate change." @default.
- W2115429905 created "2016-06-24" @default.
- W2115429905 creator A5008705643 @default.
- W2115429905 creator A5025358852 @default.
- W2115429905 creator A5033382991 @default.
- W2115429905 creator A5041882417 @default.
- W2115429905 creator A5047083129 @default.
- W2115429905 creator A5075330939 @default.
- W2115429905 date "2012-01-31" @default.
- W2115429905 modified "2023-10-12" @default.
- W2115429905 title "Water-table height and microtopography control biogeochemical cycling in an Arctic coastal tundra ecosystem" @default.
- W2115429905 cites W1669242417 @default.
- W2115429905 cites W1965011922 @default.
- W2115429905 cites W1969017329 @default.
- W2115429905 cites W1970801056 @default.
- W2115429905 cites W1971364375 @default.
- W2115429905 cites W1981851600 @default.
- W2115429905 cites W1982227893 @default.
- W2115429905 cites W1982379278 @default.
- W2115429905 cites W1983239894 @default.
- W2115429905 cites W1984650806 @default.
- W2115429905 cites W1992889910 @default.
- W2115429905 cites W1994724974 @default.
- W2115429905 cites W2003285183 @default.
- W2115429905 cites W2007737986 @default.
- W2115429905 cites W2017770982 @default.
- W2115429905 cites W2022910731 @default.
- W2115429905 cites W2028080961 @default.
- W2115429905 cites W2031808375 @default.
- W2115429905 cites W2040858974 @default.
- W2115429905 cites W2053610595 @default.
- W2115429905 cites W2053882607 @default.
- W2115429905 cites W2054622657 @default.
- W2115429905 cites W2055062468 @default.
- W2115429905 cites W2056209258 @default.
- W2115429905 cites W2059842005 @default.
- W2115429905 cites W2067710927 @default.
- W2115429905 cites W2071741922 @default.
- W2115429905 cites W2085117485 @default.
- W2115429905 cites W2092525110 @default.
- W2115429905 cites W2093458929 @default.
- W2115429905 cites W2093652687 @default.
- W2115429905 cites W2093725366 @default.
- W2115429905 cites W2099899709 @default.
- W2115429905 cites W2103182972 @default.
- W2115429905 cites W2104312558 @default.
- W2115429905 cites W2107333337 @default.
- W2115429905 cites W2112728677 @default.
- W2115429905 cites W2121766793 @default.
- W2115429905 cites W2121922505 @default.
- W2115429905 cites W2147489195 @default.
- W2115429905 cites W2148569138 @default.
- W2115429905 cites W2149533423 @default.
- W2115429905 cites W2158584987 @default.
- W2115429905 cites W2159200641 @default.
- W2115429905 cites W2161038005 @default.
- W2115429905 cites W2170831974 @default.
- W2115429905 cites W2176847655 @default.
- W2115429905 cites W2331716588 @default.
- W2115429905 cites W2508638762 @default.
- W2115429905 cites W2884818108 @default.
- W2115429905 cites W3191084815 @default.
- W2115429905 cites W4235836703 @default.
- W2115429905 cites W4245760120 @default.
- W2115429905 cites W4254908845 @default.
- W2115429905 cites W4255430913 @default.
- W2115429905 cites W4379138127 @default.
- W2115429905 doi "https://doi.org/10.5194/bg-9-577-2012" @default.
- W2115429905 hasPublicationYear "2012" @default.
- W2115429905 type Work @default.
- W2115429905 sameAs 2115429905 @default.
- W2115429905 citedByCount "81" @default.
- W2115429905 countsByYear W21154299052012 @default.
- W2115429905 countsByYear W21154299052013 @default.
- W2115429905 countsByYear W21154299052014 @default.
- W2115429905 countsByYear W21154299052015 @default.
- W2115429905 countsByYear W21154299052016 @default.
- W2115429905 countsByYear W21154299052017 @default.
- W2115429905 countsByYear W21154299052018 @default.
- W2115429905 countsByYear W21154299052019 @default.
- W2115429905 countsByYear W21154299052020 @default.
- W2115429905 countsByYear W21154299052021 @default.
- W2115429905 countsByYear W21154299052022 @default.
- W2115429905 countsByYear W21154299052023 @default.
- W2115429905 crossrefType "journal-article" @default.
- W2115429905 hasAuthorship W2115429905A5008705643 @default.
- W2115429905 hasAuthorship W2115429905A5025358852 @default.
- W2115429905 hasAuthorship W2115429905A5033382991 @default.
- W2115429905 hasAuthorship W2115429905A5041882417 @default.
- W2115429905 hasAuthorship W2115429905A5047083129 @default.
- W2115429905 hasAuthorship W2115429905A5075330939 @default.
- W2115429905 hasBestOaLocation W21154299051 @default.
- W2115429905 hasConcept C107872376 @default.
- W2115429905 hasConcept C110872660 @default.
- W2115429905 hasConcept C111368507 @default.
- W2115429905 hasConcept C125069764 @default.
- W2115429905 hasConcept C127313418 @default.
- W2115429905 hasConcept C15098985 @default.