Matches in SemOpenAlex for { <https://semopenalex.org/work/W2115521901> ?p ?o ?g. }
- W2115521901 endingPage "e114885" @default.
- W2115521901 startingPage "e114885" @default.
- W2115521901 abstract "The categorization of intraductal proliferative lesions of the breast based on routine light microscopic examination of histopathologic sections is in many cases challenging, even for experienced pathologists. The development of computational tools to aid pathologists in the characterization of these lesions would have great diagnostic and clinical value. As a first step to address this issue, we evaluated the ability of computational image analysis to accurately classify DCIS and UDH and to stratify nuclear grade within DCIS. Using 116 breast biopsies diagnosed as DCIS or UDH from the Massachusetts General Hospital (MGH), we developed a computational method to extract 392 features corresponding to the mean and standard deviation in nuclear size and shape, intensity, and texture across 8 color channels. We used L1-regularized logistic regression to build classification models to discriminate DCIS from UDH. The top-performing model contained 22 active features and achieved an AUC of 0.95 in cross-validation on the MGH data-set. We applied this model to an external validation set of 51 breast biopsies diagnosed as DCIS or UDH from the Beth Israel Deaconess Medical Center, and the model achieved an AUC of 0.86. The top-performing model contained active features from all color-spaces and from the three classes of features (morphology, intensity, and texture), suggesting the value of each for prediction. We built models to stratify grade within DCIS and obtained strong performance for stratifying low nuclear grade vs. high nuclear grade DCIS (AUC = 0.98 in cross-validation) with only moderate performance for discriminating low nuclear grade vs. intermediate nuclear grade and intermediate nuclear grade vs. high nuclear grade DCIS (AUC = 0.83 and 0.69, respectively). These data show that computational pathology models can robustly discriminate benign from malignant intraductal proliferative lesions of the breast and may aid pathologists in the diagnosis and classification of these lesions." @default.
- W2115521901 created "2016-06-24" @default.
- W2115521901 creator A5001591592 @default.
- W2115521901 creator A5007365512 @default.
- W2115521901 creator A5014555716 @default.
- W2115521901 creator A5016607688 @default.
- W2115521901 creator A5017348850 @default.
- W2115521901 creator A5048635908 @default.
- W2115521901 creator A5053483293 @default.
- W2115521901 creator A5054189757 @default.
- W2115521901 creator A5063493321 @default.
- W2115521901 creator A5076196099 @default.
- W2115521901 creator A5076826506 @default.
- W2115521901 creator A5085307751 @default.
- W2115521901 creator A5085420791 @default.
- W2115521901 creator A5086728120 @default.
- W2115521901 date "2014-12-09" @default.
- W2115521901 modified "2023-10-16" @default.
- W2115521901 title "Computational Pathology to Discriminate Benign from Malignant Intraductal Proliferations of the Breast" @default.
- W2115521901 cites W1597336200 @default.
- W2115521901 cites W1978641411 @default.
- W2115521901 cites W1979742363 @default.
- W2115521901 cites W1982716740 @default.
- W2115521901 cites W1986042144 @default.
- W2115521901 cites W1988664748 @default.
- W2115521901 cites W1995162574 @default.
- W2115521901 cites W1995939025 @default.
- W2115521901 cites W1998025025 @default.
- W2115521901 cites W2003304826 @default.
- W2115521901 cites W2015193896 @default.
- W2115521901 cites W2016446434 @default.
- W2115521901 cites W2026893473 @default.
- W2115521901 cites W2037356296 @default.
- W2115521901 cites W2044465660 @default.
- W2115521901 cites W2045143812 @default.
- W2115521901 cites W2048672627 @default.
- W2115521901 cites W2051765910 @default.
- W2115521901 cites W2062118960 @default.
- W2115521901 cites W2067241584 @default.
- W2115521901 cites W2075417022 @default.
- W2115521901 cites W2081762973 @default.
- W2115521901 cites W2085308158 @default.
- W2115521901 cites W2089434848 @default.
- W2115521901 cites W2096003572 @default.
- W2115521901 cites W2097360283 @default.
- W2115521901 cites W2098968548 @default.
- W2115521901 cites W2103243046 @default.
- W2115521901 cites W2105739910 @default.
- W2115521901 cites W2107901014 @default.
- W2115521901 cites W2108887189 @default.
- W2115521901 cites W2110243528 @default.
- W2115521901 cites W2111574404 @default.
- W2115521901 cites W2116133657 @default.
- W2115521901 cites W2123970632 @default.
- W2115521901 cites W2166581609 @default.
- W2115521901 cites W2167279371 @default.
- W2115521901 cites W22040386 @default.
- W2115521901 cites W2322969960 @default.
- W2115521901 cites W2328561181 @default.
- W2115521901 cites W2418609800 @default.
- W2115521901 cites W4294541781 @default.
- W2115521901 doi "https://doi.org/10.1371/journal.pone.0114885" @default.
- W2115521901 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4260962" @default.
- W2115521901 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25490766" @default.
- W2115521901 hasPublicationYear "2014" @default.
- W2115521901 type Work @default.
- W2115521901 sameAs 2115521901 @default.
- W2115521901 citedByCount "107" @default.
- W2115521901 countsByYear W21155219012015 @default.
- W2115521901 countsByYear W21155219012016 @default.
- W2115521901 countsByYear W21155219012017 @default.
- W2115521901 countsByYear W21155219012018 @default.
- W2115521901 countsByYear W21155219012019 @default.
- W2115521901 countsByYear W21155219012020 @default.
- W2115521901 countsByYear W21155219012021 @default.
- W2115521901 countsByYear W21155219012022 @default.
- W2115521901 countsByYear W21155219012023 @default.
- W2115521901 crossrefType "journal-article" @default.
- W2115521901 hasAuthorship W2115521901A5001591592 @default.
- W2115521901 hasAuthorship W2115521901A5007365512 @default.
- W2115521901 hasAuthorship W2115521901A5014555716 @default.
- W2115521901 hasAuthorship W2115521901A5016607688 @default.
- W2115521901 hasAuthorship W2115521901A5017348850 @default.
- W2115521901 hasAuthorship W2115521901A5048635908 @default.
- W2115521901 hasAuthorship W2115521901A5053483293 @default.
- W2115521901 hasAuthorship W2115521901A5054189757 @default.
- W2115521901 hasAuthorship W2115521901A5063493321 @default.
- W2115521901 hasAuthorship W2115521901A5076196099 @default.
- W2115521901 hasAuthorship W2115521901A5076826506 @default.
- W2115521901 hasAuthorship W2115521901A5085307751 @default.
- W2115521901 hasAuthorship W2115521901A5085420791 @default.
- W2115521901 hasAuthorship W2115521901A5086728120 @default.
- W2115521901 hasBestOaLocation W21155219011 @default.
- W2115521901 hasConcept C121608353 @default.
- W2115521901 hasConcept C126322002 @default.
- W2115521901 hasConcept C126838900 @default.
- W2115521901 hasConcept C142724271 @default.
- W2115521901 hasConcept C151956035 @default.