Matches in SemOpenAlex for { <https://semopenalex.org/work/W2115546424> ?p ?o ?g. }
- W2115546424 endingPage "e101271" @default.
- W2115546424 startingPage "e101271" @default.
- W2115546424 abstract "K-mer abundance analysis is widely used for many purposes in nucleotide sequence analysis, including data preprocessing for de novo assembly, repeat detection, and sequencing coverage estimation. We present the khmer software package for fast and memory efficient online counting of k-mers in sequencing data sets. Unlike previous methods based on data structures such as hash tables, suffix arrays, and trie structures, khmer relies entirely on a simple probabilistic data structure, a Count-Min Sketch. The Count-Min Sketch permits online updating and retrieval of k-mer counts in memory which is necessary to support online k-mer analysis algorithms. On sparse data sets this data structure is considerably more memory efficient than any exact data structure. In exchange, the use of a Count-Min Sketch introduces a systematic overcount for k-mers; moreover, only the counts, and not the k-mers, are stored. Here we analyze the speed, the memory usage, and the miscount rate of khmer for generating k-mer frequency distributions and retrieving k-mer counts for individual k-mers. We also compare the performance of khmer to several other k-mer counting packages, including Tallymer, Jellyfish, BFCounter, DSK, KMC, Turtle and KAnalyze. Finally, we examine the effectiveness of profiling sequencing error, k-mer abundance trimming, and digital normalization of reads in the context of high khmer false positive rates. khmer is implemented in C++ wrapped in a Python interface, offers a tested and robust API, and is freely available under the BSD license at github.com/ged-lab/khmer." @default.
- W2115546424 created "2016-06-24" @default.
- W2115546424 creator A5005879555 @default.
- W2115546424 creator A5007762818 @default.
- W2115546424 creator A5029926687 @default.
- W2115546424 creator A5036229691 @default.
- W2115546424 creator A5083649171 @default.
- W2115546424 date "2014-07-25" @default.
- W2115546424 modified "2023-10-03" @default.
- W2115546424 title "These Are Not the K-mers You Are Looking For: Efficient Online K-mer Counting Using a Probabilistic Data Structure" @default.
- W2115546424 cites W151938044 @default.
- W2115546424 cites W1993284846 @default.
- W2115546424 cites W2011657487 @default.
- W2115546424 cites W2023797161 @default.
- W2115546424 cites W2027667941 @default.
- W2115546424 cites W2037444377 @default.
- W2115546424 cites W2057253402 @default.
- W2115546424 cites W2060880575 @default.
- W2115546424 cites W2061939373 @default.
- W2115546424 cites W2066588467 @default.
- W2115546424 cites W2080234606 @default.
- W2115546424 cites W2096128575 @default.
- W2115546424 cites W2104677379 @default.
- W2115546424 cites W2113287691 @default.
- W2115546424 cites W2118526609 @default.
- W2115546424 cites W2123845384 @default.
- W2115546424 cites W2125826054 @default.
- W2115546424 cites W2126540423 @default.
- W2115546424 cites W2133531097 @default.
- W2115546424 cites W2133956160 @default.
- W2115546424 cites W2136651963 @default.
- W2115546424 cites W2149118757 @default.
- W2115546424 cites W2159591897 @default.
- W2115546424 cites W2160265768 @default.
- W2115546424 cites W2160969485 @default.
- W2115546424 cites W2163584430 @default.
- W2115546424 cites W2163830511 @default.
- W2115546424 cites W2166588423 @default.
- W2115546424 cites W2167142762 @default.
- W2115546424 cites W4206137901 @default.
- W2115546424 doi "https://doi.org/10.1371/journal.pone.0101271" @default.
- W2115546424 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4111482" @default.
- W2115546424 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25062443" @default.
- W2115546424 hasPublicationYear "2014" @default.
- W2115546424 type Work @default.
- W2115546424 sameAs 2115546424 @default.
- W2115546424 citedByCount "88" @default.
- W2115546424 countsByYear W21155464242014 @default.
- W2115546424 countsByYear W21155464242015 @default.
- W2115546424 countsByYear W21155464242016 @default.
- W2115546424 countsByYear W21155464242017 @default.
- W2115546424 countsByYear W21155464242018 @default.
- W2115546424 countsByYear W21155464242019 @default.
- W2115546424 countsByYear W21155464242020 @default.
- W2115546424 countsByYear W21155464242021 @default.
- W2115546424 countsByYear W21155464242022 @default.
- W2115546424 countsByYear W21155464242023 @default.
- W2115546424 crossrefType "journal-article" @default.
- W2115546424 hasAuthorship W2115546424A5005879555 @default.
- W2115546424 hasAuthorship W2115546424A5007762818 @default.
- W2115546424 hasAuthorship W2115546424A5029926687 @default.
- W2115546424 hasAuthorship W2115546424A5036229691 @default.
- W2115546424 hasAuthorship W2115546424A5083649171 @default.
- W2115546424 hasBestOaLocation W21155464241 @default.
- W2115546424 hasConcept C100906024 @default.
- W2115546424 hasConcept C105795698 @default.
- W2115546424 hasConcept C11413529 @default.
- W2115546424 hasConcept C124101348 @default.
- W2115546424 hasConcept C147224247 @default.
- W2115546424 hasConcept C162319229 @default.
- W2115546424 hasConcept C190290938 @default.
- W2115546424 hasConcept C199360897 @default.
- W2115546424 hasConcept C2279292 @default.
- W2115546424 hasConcept C33643355 @default.
- W2115546424 hasConcept C33923547 @default.
- W2115546424 hasConcept C41008148 @default.
- W2115546424 hasConcept C51679486 @default.
- W2115546424 hasConcept C519991488 @default.
- W2115546424 hasConcept C54355233 @default.
- W2115546424 hasConcept C552990157 @default.
- W2115546424 hasConcept C67388219 @default.
- W2115546424 hasConcept C86803240 @default.
- W2115546424 hasConcept C99138194 @default.
- W2115546424 hasConceptScore W2115546424C100906024 @default.
- W2115546424 hasConceptScore W2115546424C105795698 @default.
- W2115546424 hasConceptScore W2115546424C11413529 @default.
- W2115546424 hasConceptScore W2115546424C124101348 @default.
- W2115546424 hasConceptScore W2115546424C147224247 @default.
- W2115546424 hasConceptScore W2115546424C162319229 @default.
- W2115546424 hasConceptScore W2115546424C190290938 @default.
- W2115546424 hasConceptScore W2115546424C199360897 @default.
- W2115546424 hasConceptScore W2115546424C2279292 @default.
- W2115546424 hasConceptScore W2115546424C33643355 @default.
- W2115546424 hasConceptScore W2115546424C33923547 @default.
- W2115546424 hasConceptScore W2115546424C41008148 @default.
- W2115546424 hasConceptScore W2115546424C51679486 @default.
- W2115546424 hasConceptScore W2115546424C519991488 @default.
- W2115546424 hasConceptScore W2115546424C54355233 @default.