Matches in SemOpenAlex for { <https://semopenalex.org/work/W2115640607> ?p ?o ?g. }
- W2115640607 endingPage "4405" @default.
- W2115640607 startingPage "4389" @default.
- W2115640607 abstract "Teleseismic long‐period World‐Wide Standard Seismograph Network (WWSSN) tangential component recordings of deep and intermediate depth earthquakes are analyzed for the presence of sS precursors, denoted s x S , signifying underside reflections from discontinuities at depth x below the sS reflection point above the source. These sS precursors can be used to place constraints on upper mantle discontinuities in the vicinity of subduction zones. The clearest precursor is usually the s m S phase, the underside reflection from the Moho, which is observed for a number of events in the northwestern Pacific for paths reflecting under the Sea of Okhotsk and North Korea. The amplitude and timing of s m S relative to sS are modeled using synthetic seismograms to determine the shear wave impedance contrast at the Moho and the crustal thickness in these regions. The results are compared with previous work on pP precursors reflected from the Moho for similar paths, with consistent crustal thickness being found. s m S is strong for continental reflection points under North Korea, which has laterally varying 31 to 36 km crustal thickness and 31.2% to 18% shear wave impedance contrast at the Moho. In the northern Sea of Okhotsk region the crustal thickness is around 21 to 29 km with 26% to 28% shear wave impedance contrast at the Moho. Stacked s m S waveforms for the Sea of Okhotsk vary from strong, isolated arrivals in the north to weak, poorly defined precursors toward the south, reflecting a transition from continental to oceanic crust. s m S is not clearly separated from sS for oceanic paths under the Izu and Japan regions, and our procedure cannot resolve oceanic Moho properties unless broadband data are used. Other precursors, s x S , are much weaker than s m S and are difficult to identify in individual waveforms. We use slant stacking to enhance the signal to noise and search for precursors with various slownesses, using recordings from 13 deep events. Four SH wave reflectors may exist below the Moho in our study area. The shallowest is the “80‐km” discontinuity, which varies in depth laterally, being near 80 to 85 km below the Sea of Okhotsk, near 66 km beneath Izu Japan, and near 90 km under North Korea. A reflector near 200 to 210 km depth is indicated by data from Izu Japan, but there is no evidence for any shear wave impedance contrast around this depth under North Korea or the Sea of Okhotsk. Weak evidence is found for a “330‐km” discontinuity in these regions, with the depth of a few percent impedance contrast varying from 325 to 335 km. Relatively strong and consistent arrivals indicate the presence of a “400‐km” discontinuity, with the depth varying from 380 to 400 km, perhaps indicating slight elevation of the olivine→ β phase transformation near the slabs." @default.
- W2115640607 created "2016-06-24" @default.
- W2115640607 creator A5017232467 @default.
- W2115640607 creator A5057489654 @default.
- W2115640607 date "1993-03-10" @default.
- W2115640607 modified "2023-10-13" @default.
- W2115640607 title "Investigation of upper mantle discontinuities near Northwestern Pacific Subduction Zones using precursors to <i>sSH</i>" @default.
- W2115640607 cites W1965912208 @default.
- W2115640607 cites W1968875884 @default.
- W2115640607 cites W1969418472 @default.
- W2115640607 cites W1986316932 @default.
- W2115640607 cites W1991463900 @default.
- W2115640607 cites W2006796100 @default.
- W2115640607 cites W2009880648 @default.
- W2115640607 cites W2021325332 @default.
- W2115640607 cites W2033082872 @default.
- W2115640607 cites W2037105264 @default.
- W2115640607 cites W2040063039 @default.
- W2115640607 cites W2042222692 @default.
- W2115640607 cites W2049009033 @default.
- W2115640607 cites W2062221814 @default.
- W2115640607 cites W2072456915 @default.
- W2115640607 cites W2074368419 @default.
- W2115640607 cites W2078933797 @default.
- W2115640607 cites W2086195688 @default.
- W2115640607 cites W2086618592 @default.
- W2115640607 cites W2088207845 @default.
- W2115640607 cites W2091656873 @default.
- W2115640607 cites W2108475404 @default.
- W2115640607 cites W2118683430 @default.
- W2115640607 cites W2129881167 @default.
- W2115640607 cites W2130113547 @default.
- W2115640607 cites W2131551151 @default.
- W2115640607 cites W2131863429 @default.
- W2115640607 cites W2133653693 @default.
- W2115640607 cites W2137080505 @default.
- W2115640607 cites W2148762666 @default.
- W2115640607 cites W2152210657 @default.
- W2115640607 cites W2159491264 @default.
- W2115640607 cites W2168495165 @default.
- W2115640607 cites W2171805491 @default.
- W2115640607 cites W2283514411 @default.
- W2115640607 doi "https://doi.org/10.1029/92jb02050" @default.
- W2115640607 hasPublicationYear "1993" @default.
- W2115640607 type Work @default.
- W2115640607 sameAs 2115640607 @default.
- W2115640607 citedByCount "49" @default.
- W2115640607 countsByYear W21156406072012 @default.
- W2115640607 countsByYear W21156406072013 @default.
- W2115640607 countsByYear W21156406072014 @default.
- W2115640607 countsByYear W21156406072015 @default.
- W2115640607 countsByYear W21156406072017 @default.
- W2115640607 countsByYear W21156406072019 @default.
- W2115640607 countsByYear W21156406072020 @default.
- W2115640607 countsByYear W21156406072021 @default.
- W2115640607 countsByYear W21156406072022 @default.
- W2115640607 crossrefType "journal-article" @default.
- W2115640607 hasAuthorship W2115640607A5017232467 @default.
- W2115640607 hasAuthorship W2115640607A5057489654 @default.
- W2115640607 hasConcept C119217923 @default.
- W2115640607 hasConcept C121332964 @default.
- W2115640607 hasConcept C127313418 @default.
- W2115640607 hasConcept C134306372 @default.
- W2115640607 hasConcept C141646446 @default.
- W2115640607 hasConcept C154200439 @default.
- W2115640607 hasConcept C15627037 @default.
- W2115640607 hasConcept C163686574 @default.
- W2115640607 hasConcept C165205528 @default.
- W2115640607 hasConcept C169744125 @default.
- W2115640607 hasConcept C180205008 @default.
- W2115640607 hasConcept C2776698055 @default.
- W2115640607 hasConcept C33923547 @default.
- W2115640607 hasConcept C58097730 @default.
- W2115640607 hasConcept C5900021 @default.
- W2115640607 hasConcept C62520636 @default.
- W2115640607 hasConcept C67236022 @default.
- W2115640607 hasConcept C77928131 @default.
- W2115640607 hasConcept C8058405 @default.
- W2115640607 hasConcept C96035792 @default.
- W2115640607 hasConceptScore W2115640607C119217923 @default.
- W2115640607 hasConceptScore W2115640607C121332964 @default.
- W2115640607 hasConceptScore W2115640607C127313418 @default.
- W2115640607 hasConceptScore W2115640607C134306372 @default.
- W2115640607 hasConceptScore W2115640607C141646446 @default.
- W2115640607 hasConceptScore W2115640607C154200439 @default.
- W2115640607 hasConceptScore W2115640607C15627037 @default.
- W2115640607 hasConceptScore W2115640607C163686574 @default.
- W2115640607 hasConceptScore W2115640607C165205528 @default.
- W2115640607 hasConceptScore W2115640607C169744125 @default.
- W2115640607 hasConceptScore W2115640607C180205008 @default.
- W2115640607 hasConceptScore W2115640607C2776698055 @default.
- W2115640607 hasConceptScore W2115640607C33923547 @default.
- W2115640607 hasConceptScore W2115640607C58097730 @default.
- W2115640607 hasConceptScore W2115640607C5900021 @default.
- W2115640607 hasConceptScore W2115640607C62520636 @default.
- W2115640607 hasConceptScore W2115640607C67236022 @default.
- W2115640607 hasConceptScore W2115640607C77928131 @default.
- W2115640607 hasConceptScore W2115640607C8058405 @default.