Matches in SemOpenAlex for { <https://semopenalex.org/work/W2115823897> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2115823897 endingPage "2812" @default.
- W2115823897 startingPage "2803" @default.
- W2115823897 abstract "The maximum rank correlation (MRC) estimator was originally studied by Han [1987. Nonparametric analysis of a generalized regression model. J. Econometrics 35, 303-316] and Sherman [1993. The limiting distribution of the maximum rank correlation estimator. Econometrica 61, 123-137] from the econometrics point of view, and most recently attracted much attention from the classification literature due to its close relationship with the receiver operating characteristics (ROC) curve [Baker, 2003. The central role of receiver operating characteristics (ROC) curves in evaluating tests for the early detection of cancer. J. Nat. Cancer Inst. 95, 511-515; Pepe, 2003. The Statistical Evaluation of Medical Tests for Classification and Prediction. Oxford University Press, Oxford; Pepe et al., 2004. Combining predictors for classification using the area under the ROC curve. University of Washington Biostatistics Working Paper Series]. Compared with its nice theoretical properties and successful applications, the MRC estimator's computational aspects are not trivial. This is because the MRC objective function is neither smooth nor continuous. Therefore, the traditional Newton-Raphson type algorithm cannot be used to find the MRC estimator. As an easy solution, we propose in this article a very simple fitting algorithm named iterative marginal optimization (IMO), which guarantees a monotone increasing of the MRC objective function at each iteration step in a very efficient manner. We show via extensive simulation that the proposed IMO algorithm is not only computationally stable but also reasonably fast. Moreover, real data about the China stock market are analyzed to further illustrate the usefulness of the proposed." @default.
- W2115823897 created "2016-06-24" @default.
- W2115823897 creator A5048394694 @default.
- W2115823897 date "2007-03-01" @default.
- W2115823897 modified "2023-09-23" @default.
- W2115823897 title "A note on iterative marginal optimization: a simple algorithm for maximum rank correlation estimation" @default.
- W2115823897 cites W1528905581 @default.
- W2115823897 cites W1539462193 @default.
- W2115823897 cites W1551610462 @default.
- W2115823897 cites W1580788756 @default.
- W2115823897 cites W1597926580 @default.
- W2115823897 cites W1604904753 @default.
- W2115823897 cites W1974801771 @default.
- W2115823897 cites W2024991751 @default.
- W2115823897 cites W2040046786 @default.
- W2115823897 cites W2092835732 @default.
- W2115823897 cites W2144062053 @default.
- W2115823897 cites W2168334201 @default.
- W2115823897 cites W2171074980 @default.
- W2115823897 cites W3015463134 @default.
- W2115823897 doi "https://doi.org/10.1016/j.csda.2006.10.004" @default.
- W2115823897 hasPublicationYear "2007" @default.
- W2115823897 type Work @default.
- W2115823897 sameAs 2115823897 @default.
- W2115823897 citedByCount "23" @default.
- W2115823897 countsByYear W21158238972012 @default.
- W2115823897 countsByYear W21158238972013 @default.
- W2115823897 countsByYear W21158238972014 @default.
- W2115823897 countsByYear W21158238972016 @default.
- W2115823897 countsByYear W21158238972017 @default.
- W2115823897 countsByYear W21158238972018 @default.
- W2115823897 countsByYear W21158238972019 @default.
- W2115823897 countsByYear W21158238972020 @default.
- W2115823897 countsByYear W21158238972021 @default.
- W2115823897 crossrefType "journal-article" @default.
- W2115823897 hasAuthorship W2115823897A5048394694 @default.
- W2115823897 hasConcept C102366305 @default.
- W2115823897 hasConcept C105795698 @default.
- W2115823897 hasConcept C11413529 @default.
- W2115823897 hasConcept C114614502 @default.
- W2115823897 hasConcept C164226766 @default.
- W2115823897 hasConcept C185429906 @default.
- W2115823897 hasConcept C2524010 @default.
- W2115823897 hasConcept C2834757 @default.
- W2115823897 hasConcept C28826006 @default.
- W2115823897 hasConcept C33923547 @default.
- W2115823897 hasConcept C58471807 @default.
- W2115823897 hasConceptScore W2115823897C102366305 @default.
- W2115823897 hasConceptScore W2115823897C105795698 @default.
- W2115823897 hasConceptScore W2115823897C11413529 @default.
- W2115823897 hasConceptScore W2115823897C114614502 @default.
- W2115823897 hasConceptScore W2115823897C164226766 @default.
- W2115823897 hasConceptScore W2115823897C185429906 @default.
- W2115823897 hasConceptScore W2115823897C2524010 @default.
- W2115823897 hasConceptScore W2115823897C2834757 @default.
- W2115823897 hasConceptScore W2115823897C28826006 @default.
- W2115823897 hasConceptScore W2115823897C33923547 @default.
- W2115823897 hasConceptScore W2115823897C58471807 @default.
- W2115823897 hasIssue "6" @default.
- W2115823897 hasLocation W21158238971 @default.
- W2115823897 hasOpenAccess W2115823897 @default.
- W2115823897 hasPrimaryLocation W21158238971 @default.
- W2115823897 hasRelatedWork W2051851230 @default.
- W2115823897 hasRelatedWork W2065344137 @default.
- W2115823897 hasRelatedWork W2330407128 @default.
- W2115823897 hasRelatedWork W2368363712 @default.
- W2115823897 hasRelatedWork W2940439760 @default.
- W2115823897 hasRelatedWork W4230347692 @default.
- W2115823897 hasRelatedWork W4234996786 @default.
- W2115823897 hasRelatedWork W4248674118 @default.
- W2115823897 hasRelatedWork W2739522403 @default.
- W2115823897 hasRelatedWork W339643470 @default.
- W2115823897 hasVolume "51" @default.
- W2115823897 isParatext "false" @default.
- W2115823897 isRetracted "false" @default.
- W2115823897 magId "2115823897" @default.
- W2115823897 workType "article" @default.