Matches in SemOpenAlex for { <https://semopenalex.org/work/W2115982353> ?p ?o ?g. }
- W2115982353 endingPage "711" @default.
- W2115982353 startingPage "698" @default.
- W2115982353 abstract "This paper presents an efficient technique for synthesis and optimization of the polynomials over GF(2 <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>m</sup> ), where to is a nonzero positive integer. The technique is based on a graph-based decomposition and factorization of the polynomials, followed by efficient network factorization and optimization. A technique for efficiently computing the coefficients of the polynomials over GF(p <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>m</sup> ), where p is a prime number, is first presented. The coefficients are stored as polynomial graphs over GF(p <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>m</sup> ). The synthesis and optimization is initiated from this graph-based representation. The technique has been applied to minimize multipliers over the fields GF(2 <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>k</sup> ), where k = 2,...,8, generated with all the 51 primitive polynomials in the 0.18-mum CMOS technology with the help of the Synopsys design compiler. It has also been applied to minimize combinational exponentiation circuits, parallel integer adders and multipliers, and other multivariate bit- as well as word-level polynomials. The experimental results suggest that the proposed technique can reduce area, delay, and power by significant amounts. We also observed that the technique is capable of producing 100% testable circuits for stuck-at faults." @default.
- W2115982353 created "2016-06-24" @default.
- W2115982353 creator A5070343644 @default.
- W2115982353 creator A5076588539 @default.
- W2115982353 creator A5081683515 @default.
- W2115982353 date "2008-04-01" @default.
- W2115982353 modified "2023-10-16" @default.
- W2115982353 title "GfXpress: A Technique for Synthesis and Optimization of $hbox{GF}(2^{m})$ Polynomials" @default.
- W2115982353 cites W1487642117 @default.
- W2115982353 cites W1494035541 @default.
- W2115982353 cites W1508193711 @default.
- W2115982353 cites W1511864029 @default.
- W2115982353 cites W1554885925 @default.
- W2115982353 cites W1660562555 @default.
- W2115982353 cites W1879281873 @default.
- W2115982353 cites W1974872521 @default.
- W2115982353 cites W1980429762 @default.
- W2115982353 cites W1999431940 @default.
- W2115982353 cites W2003736153 @default.
- W2115982353 cites W2004974096 @default.
- W2115982353 cites W2036733588 @default.
- W2115982353 cites W2038884834 @default.
- W2115982353 cites W2040075573 @default.
- W2115982353 cites W2060159381 @default.
- W2115982353 cites W2069060940 @default.
- W2115982353 cites W2070279173 @default.
- W2115982353 cites W2080267935 @default.
- W2115982353 cites W2100122264 @default.
- W2115982353 cites W2108956554 @default.
- W2115982353 cites W2113291984 @default.
- W2115982353 cites W2113682216 @default.
- W2115982353 cites W2114296878 @default.
- W2115982353 cites W2129183345 @default.
- W2115982353 cites W2129691920 @default.
- W2115982353 cites W2130623996 @default.
- W2115982353 cites W2131287315 @default.
- W2115982353 cites W2132406758 @default.
- W2115982353 cites W2135541577 @default.
- W2115982353 cites W2146395408 @default.
- W2115982353 cites W2149204794 @default.
- W2115982353 cites W2149888493 @default.
- W2115982353 cites W2153973094 @default.
- W2115982353 cites W2156753779 @default.
- W2115982353 cites W2166450779 @default.
- W2115982353 cites W2171279237 @default.
- W2115982353 cites W2283697188 @default.
- W2115982353 cites W329998640 @default.
- W2115982353 doi "https://doi.org/10.1109/tcad.2008.917586" @default.
- W2115982353 hasPublicationYear "2008" @default.
- W2115982353 type Work @default.
- W2115982353 sameAs 2115982353 @default.
- W2115982353 citedByCount "10" @default.
- W2115982353 countsByYear W21159823532012 @default.
- W2115982353 countsByYear W21159823532016 @default.
- W2115982353 countsByYear W21159823532017 @default.
- W2115982353 crossrefType "journal-article" @default.
- W2115982353 hasAuthorship W2115982353A5070343644 @default.
- W2115982353 hasAuthorship W2115982353A5076588539 @default.
- W2115982353 hasAuthorship W2115982353A5081683515 @default.
- W2115982353 hasConcept C11413529 @default.
- W2115982353 hasConcept C114614502 @default.
- W2115982353 hasConcept C118615104 @default.
- W2115982353 hasConcept C134306372 @default.
- W2115982353 hasConcept C169590947 @default.
- W2115982353 hasConcept C184992742 @default.
- W2115982353 hasConcept C187834632 @default.
- W2115982353 hasConcept C199360897 @default.
- W2115982353 hasConcept C33923547 @default.
- W2115982353 hasConcept C41008148 @default.
- W2115982353 hasConcept C90119067 @default.
- W2115982353 hasConcept C97137487 @default.
- W2115982353 hasConceptScore W2115982353C11413529 @default.
- W2115982353 hasConceptScore W2115982353C114614502 @default.
- W2115982353 hasConceptScore W2115982353C118615104 @default.
- W2115982353 hasConceptScore W2115982353C134306372 @default.
- W2115982353 hasConceptScore W2115982353C169590947 @default.
- W2115982353 hasConceptScore W2115982353C184992742 @default.
- W2115982353 hasConceptScore W2115982353C187834632 @default.
- W2115982353 hasConceptScore W2115982353C199360897 @default.
- W2115982353 hasConceptScore W2115982353C33923547 @default.
- W2115982353 hasConceptScore W2115982353C41008148 @default.
- W2115982353 hasConceptScore W2115982353C90119067 @default.
- W2115982353 hasConceptScore W2115982353C97137487 @default.
- W2115982353 hasIssue "4" @default.
- W2115982353 hasLocation W21159823531 @default.
- W2115982353 hasOpenAccess W2115982353 @default.
- W2115982353 hasPrimaryLocation W21159823531 @default.
- W2115982353 hasRelatedWork W1413158740 @default.
- W2115982353 hasRelatedWork W1571659059 @default.
- W2115982353 hasRelatedWork W2010452943 @default.
- W2115982353 hasRelatedWork W2146836238 @default.
- W2115982353 hasRelatedWork W2156421370 @default.
- W2115982353 hasRelatedWork W2160357873 @default.
- W2115982353 hasRelatedWork W2323097435 @default.
- W2115982353 hasRelatedWork W2333358997 @default.
- W2115982353 hasRelatedWork W2963611923 @default.
- W2115982353 hasRelatedWork W3164684355 @default.
- W2115982353 hasVolume "27" @default.