Matches in SemOpenAlex for { <https://semopenalex.org/work/W2116139218> ?p ?o ?g. }
- W2116139218 endingPage "397" @default.
- W2116139218 startingPage "385" @default.
- W2116139218 abstract "Abstract A major drawback associated with the use of classical statistical methods for business failure prediction on top of financial distress is their lack of high accuracy rate. This work analyses the use of the two‐stage ensemble of multivariate discriminant analysis ( MDA ) and logit to improve predictive performance of classical statistical methods. All possible ratios are firstly built from the quantities involved and then the three common filters, that is stepwise MDA , stepwise logit, and t‐test, are used to choose another three convenient subsets of ratios. Four principal components spaces ( PCS s) are, respectively, produced on the four different feature spaces by using principal components analysis. MDA and logit are used to produce predictions on the four PCS s. After that, two levels of ensemble are implemented: one based on predictions inside each of the same type of model (i.e. MDA or logit) and another based on the former two ensembles and one best model. Each of the eight models is weighted on the base of ranking order information of its predictive accuracy in ensemble by majority voting. MDA and logit and the new challenge model of support vector machine respectively in their best standalone modes are used for comparisons. Empirical results indicate that the two‐stage ensemble of MDA and logit compares favourably with the three comparative models and all its component models." @default.
- W2116139218 created "2016-06-24" @default.
- W2116139218 creator A5004502095 @default.
- W2116139218 creator A5029219765 @default.
- W2116139218 creator A5036708474 @default.
- W2116139218 creator A5086729355 @default.
- W2116139218 date "2012-08-30" @default.
- W2116139218 modified "2023-10-17" @default.
- W2116139218 title "Forecasting business failure using two-stage ensemble of multivariate discriminant analysis and logistic regression" @default.
- W2116139218 cites W1484545635 @default.
- W2116139218 cites W1956944420 @default.
- W2116139218 cites W1957641613 @default.
- W2116139218 cites W1967186050 @default.
- W2116139218 cites W1974826193 @default.
- W2116139218 cites W1977117871 @default.
- W2116139218 cites W1979671915 @default.
- W2116139218 cites W1980260088 @default.
- W2116139218 cites W1980975236 @default.
- W2116139218 cites W1982474454 @default.
- W2116139218 cites W1982755765 @default.
- W2116139218 cites W1983624708 @default.
- W2116139218 cites W1984419199 @default.
- W2116139218 cites W1987054329 @default.
- W2116139218 cites W1993145117 @default.
- W2116139218 cites W1994583956 @default.
- W2116139218 cites W1996746465 @default.
- W2116139218 cites W1996860168 @default.
- W2116139218 cites W2001412000 @default.
- W2116139218 cites W2002579289 @default.
- W2116139218 cites W2007871702 @default.
- W2116139218 cites W2007907335 @default.
- W2116139218 cites W2007983128 @default.
- W2116139218 cites W2009620879 @default.
- W2116139218 cites W2010141248 @default.
- W2116139218 cites W2013822762 @default.
- W2116139218 cites W2016207894 @default.
- W2116139218 cites W2020245109 @default.
- W2116139218 cites W2020848494 @default.
- W2116139218 cites W2021493023 @default.
- W2116139218 cites W2027049724 @default.
- W2116139218 cites W2029864452 @default.
- W2116139218 cites W2036547589 @default.
- W2116139218 cites W2038565708 @default.
- W2116139218 cites W2042300034 @default.
- W2116139218 cites W2043196319 @default.
- W2116139218 cites W2043640552 @default.
- W2116139218 cites W2047649690 @default.
- W2116139218 cites W2048801439 @default.
- W2116139218 cites W2049344374 @default.
- W2116139218 cites W2052216493 @default.
- W2116139218 cites W2055130908 @default.
- W2116139218 cites W2058663814 @default.
- W2116139218 cites W2061555214 @default.
- W2116139218 cites W2062634819 @default.
- W2116139218 cites W2064031858 @default.
- W2116139218 cites W2064268620 @default.
- W2116139218 cites W2065071785 @default.
- W2116139218 cites W2069406445 @default.
- W2116139218 cites W2071260113 @default.
- W2116139218 cites W2084201198 @default.
- W2116139218 cites W2086431959 @default.
- W2116139218 cites W2115682519 @default.
- W2116139218 cites W2117216709 @default.
- W2116139218 cites W2121069620 @default.
- W2116139218 cites W2121635004 @default.
- W2116139218 cites W2124532504 @default.
- W2116139218 cites W2131596970 @default.
- W2116139218 cites W2133174524 @default.
- W2116139218 cites W2144012133 @default.
- W2116139218 cites W2162523902 @default.
- W2116139218 cites W2167657841 @default.
- W2116139218 cites W2172195373 @default.
- W2116139218 cites W4212883601 @default.
- W2116139218 doi "https://doi.org/10.1111/j.1468-0394.2012.00642.x" @default.
- W2116139218 hasPublicationYear "2012" @default.
- W2116139218 type Work @default.
- W2116139218 sameAs 2116139218 @default.
- W2116139218 citedByCount "26" @default.
- W2116139218 countsByYear W21161392182015 @default.
- W2116139218 countsByYear W21161392182016 @default.
- W2116139218 countsByYear W21161392182017 @default.
- W2116139218 countsByYear W21161392182018 @default.
- W2116139218 countsByYear W21161392182019 @default.
- W2116139218 countsByYear W21161392182020 @default.
- W2116139218 countsByYear W21161392182021 @default.
- W2116139218 countsByYear W21161392182022 @default.
- W2116139218 countsByYear W21161392182023 @default.
- W2116139218 crossrefType "journal-article" @default.
- W2116139218 hasAuthorship W2116139218A5004502095 @default.
- W2116139218 hasAuthorship W2116139218A5029219765 @default.
- W2116139218 hasAuthorship W2116139218A5036708474 @default.
- W2116139218 hasAuthorship W2116139218A5086729355 @default.
- W2116139218 hasConcept C105795698 @default.
- W2116139218 hasConcept C119857082 @default.
- W2116139218 hasConcept C119898033 @default.
- W2116139218 hasConcept C124101348 @default.
- W2116139218 hasConcept C140331021 @default.
- W2116139218 hasConcept C149782125 @default.