Matches in SemOpenAlex for { <https://semopenalex.org/work/W2116181026> ?p ?o ?g. }
- W2116181026 endingPage "285" @default.
- W2116181026 startingPage "261" @default.
- W2116181026 abstract "Information on primary production, decomposition, hydrology, and element cycling was integrated in annual budgets of accumulation and flux among components of a mature Douglas—fir forest ecosystem. Annual N input in precipitation and dust was 2.0 kg/ha, and an estimated 2.8 kg/ha were fixed by cyanophycophilous lichens in the canopy. Annual N loss to groundwater was 1.5 kg/ha. N appeared to be accumulating in the ecosystem. An annual decrease of ~ 2.8 kg/ha in vegetation was offset by estimated increases of 5.0 kg/ha in fallen logs, and 2.8 kg/ha in soil organic matter. Microparticulate litterfall provided a large input of N to the forest floor (3.3 kg°ha — 1 °yr — 1 ). Annual input of metallic cations in precipitation was only 545 eq/ha, whereas weathering input (net release of cations to solution from primary and secondary minerals) was estimated by difference at °9000 eq/ha. Total annual loss to groundwater was 9400 eq/ha and, because of little cation accumulation, loss almost exactly balanced input. Net transfers of P were small. Total annual input was 0.5 kg/ha, total loss was 0.7 kg/ha, and net accumulation was —0.2 kg/ha. Input of elements in precipitation and dryfall was small compared with that in the eastern United States. Water chemistry profiles showed that the biologically important elements N, P, and K increased in concentration as water passed through the canopy and litter layer but decreased as water passed through the rooted part of the mineral soil. In contrast, Na increased by a factor of 20 as water passed through the rooted soil. Concentrations of all elements except Mg were lower in the stream water than in solution at 2.0—m depth in the subsoil. At our site, unlike some eastern forests, Kjeldahl N (organic N plus NH 4 + ) accounted for most of the measured N in solution. Nitrate levels were low, averaging @<20 mg/L NO 3 — —N at all points in the profile. Titratable alkalinity dominated anion chemistry in the mineral soil, but in the upper parts of the water chemistry profile (precipitation, throughfall, and litter leachate) Cl — and SO 4 = together accounted for 30—40% of the negative charge. Total return to the forest floor in litterfall was greater than that reported for other Douglas—fir stands mainly because of plentiful microparticulate forms and coarse woody debris. Leaf fall accounted for less than half of the total litterfall input of N to the forest floor. Element accumulations in coarse woody debris almost cancelled the negative net annual increments in the living vegetation compartments. Overall cycling patterns show that only the biologically limiting element, N, was tightly conserved. For other elements, losses nearly equaled or even exceeded inputs. Redistribution from old to new foliage was also more important for N, P, and K than for Ca, Mg, and Na. Solution transport processes were important for all elements and dominated the cycling patterns of biologically less important elements such as Ca and Na. Vegetation absorbed metallic cations mainly from the mineral soil. However, much N and P were absorbed by roots penetrating up to or into the litter layer. Fluxes of hydrogen ions (H + ) resulting from water flow were negligible (@<10 2 eq°ha — 1 °yr — 1 ) compared with H + release during carbonic acid dissociation and H + removal accompanying cation release in weathering (both °10 4 eq°ha — 1 °yr — 1 ). Uptake of metallic cations by vegetation and release during decomposition exceeded uptake and release of sulfur and phosphorus anions, resulting in a net H + flux of °3 x 10 3 eq°ha — 1 °yr — 1 . An increase in acidity of the rainfall to pH 4.0 would increase H + input only °3 x 10 2 eq°ha — 1 °yr — 1 ." @default.
- W2116181026 created "2016-06-24" @default.
- W2116181026 creator A5009436071 @default.
- W2116181026 creator A5022361489 @default.
- W2116181026 creator A5022379060 @default.
- W2116181026 creator A5035839644 @default.
- W2116181026 creator A5039602200 @default.
- W2116181026 creator A5063801498 @default.
- W2116181026 date "1980-09-01" @default.
- W2116181026 modified "2023-09-30" @default.
- W2116181026 title "The Internal Element Cycles of an Old‐Growth Douglas‐Fir Ecosystem in Western Oregon" @default.
- W2116181026 cites W1504307227 @default.
- W2116181026 cites W1512608287 @default.
- W2116181026 cites W1531402364 @default.
- W2116181026 cites W1539679080 @default.
- W2116181026 cites W1542531090 @default.
- W2116181026 cites W1561299178 @default.
- W2116181026 cites W1589537059 @default.
- W2116181026 cites W1603715156 @default.
- W2116181026 cites W1879760021 @default.
- W2116181026 cites W1965341763 @default.
- W2116181026 cites W1967333645 @default.
- W2116181026 cites W1976767977 @default.
- W2116181026 cites W1978189124 @default.
- W2116181026 cites W1980136022 @default.
- W2116181026 cites W1980852946 @default.
- W2116181026 cites W1982765479 @default.
- W2116181026 cites W1983627053 @default.
- W2116181026 cites W1988443563 @default.
- W2116181026 cites W1989827032 @default.
- W2116181026 cites W1996324706 @default.
- W2116181026 cites W1999312588 @default.
- W2116181026 cites W2006913870 @default.
- W2116181026 cites W2015663015 @default.
- W2116181026 cites W2016071773 @default.
- W2116181026 cites W2022058315 @default.
- W2116181026 cites W2023035150 @default.
- W2116181026 cites W2023131848 @default.
- W2116181026 cites W2027571869 @default.
- W2116181026 cites W2028762503 @default.
- W2116181026 cites W2032095870 @default.
- W2116181026 cites W2033620993 @default.
- W2116181026 cites W2033909501 @default.
- W2116181026 cites W2034876680 @default.
- W2116181026 cites W2035850881 @default.
- W2116181026 cites W2041880696 @default.
- W2116181026 cites W2041949600 @default.
- W2116181026 cites W2051864058 @default.
- W2116181026 cites W2052501693 @default.
- W2116181026 cites W2059146878 @default.
- W2116181026 cites W2061616610 @default.
- W2116181026 cites W2061820668 @default.
- W2116181026 cites W2063541252 @default.
- W2116181026 cites W2065901828 @default.
- W2116181026 cites W2066069325 @default.
- W2116181026 cites W2070901121 @default.
- W2116181026 cites W2071185249 @default.
- W2116181026 cites W2071738546 @default.
- W2116181026 cites W2073136483 @default.
- W2116181026 cites W2079883151 @default.
- W2116181026 cites W2085979312 @default.
- W2116181026 cites W2091610578 @default.
- W2116181026 cites W2099648436 @default.
- W2116181026 cites W2099656668 @default.
- W2116181026 cites W2101652810 @default.
- W2116181026 cites W2107199069 @default.
- W2116181026 cites W2111998310 @default.
- W2116181026 cites W2117327398 @default.
- W2116181026 cites W2145833559 @default.
- W2116181026 cites W2147436614 @default.
- W2116181026 cites W2151526862 @default.
- W2116181026 cites W2152015161 @default.
- W2116181026 cites W2155981730 @default.
- W2116181026 cites W2160707469 @default.
- W2116181026 cites W2168955715 @default.
- W2116181026 cites W227578804 @default.
- W2116181026 cites W2313999241 @default.
- W2116181026 cites W2316141854 @default.
- W2116181026 cites W2462510326 @default.
- W2116181026 cites W2751755219 @default.
- W2116181026 cites W2771733155 @default.
- W2116181026 cites W2778087085 @default.
- W2116181026 cites W2992250990 @default.
- W2116181026 cites W3022829284 @default.
- W2116181026 cites W3106826723 @default.
- W2116181026 cites W3215995741 @default.
- W2116181026 cites W67457565 @default.
- W2116181026 cites W779693540 @default.
- W2116181026 cites W93764453 @default.
- W2116181026 doi "https://doi.org/10.2307/2937252" @default.
- W2116181026 hasPublicationYear "1980" @default.
- W2116181026 type Work @default.
- W2116181026 sameAs 2116181026 @default.
- W2116181026 citedByCount "335" @default.
- W2116181026 countsByYear W21161810262012 @default.
- W2116181026 countsByYear W21161810262013 @default.
- W2116181026 countsByYear W21161810262014 @default.
- W2116181026 countsByYear W21161810262015 @default.