Matches in SemOpenAlex for { <https://semopenalex.org/work/W2116220981> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2116220981 abstract "Visual concept learning often requires a large set of training images. In practice, nevertheless, acquiring noise-free training labels with sufficient positive examples is always expensive. A plausible solution for training data collection is by sampling the largely available user-tagged images from social media websites. With the general belief that the probability of correct tagging is higher than that of incorrect tagging, such a solution often sounds feasible, though is not without challenges. First, user-tags can be subjective and, to certain extent, are ambiguous. For instance, an image tagged with whales may be simply a picture about ocean museum. Learning concept whales with such training samples will not be effective. Second, user-tags can be overly abbreviated. For instance, an image about concept wedding may be tagged with love or simply the couple's names. As a result, crawling sufficient positive training examples is difficult. This paper empirically studies the impact of exploiting the tagged images towards concept learning, investigating the issue of how the quality of pseudo training images affects concept detection performance. In addition, we propose a simple approach, named semantic field, for predicting the relevance between a target concept and the tag list associated with the images. Specifically, the relevance is determined through concept-tag co-occurrence by exploring external sources such as WordNet and Wikipedia. The proposed approach is shown to be effective in selecting pseudo training examples, exhibiting better performance in concept learning than other approaches such as those based on keyword sampling and tag voting." @default.
- W2116220981 created "2016-06-24" @default.
- W2116220981 creator A5002829835 @default.
- W2116220981 creator A5030921116 @default.
- W2116220981 creator A5047962986 @default.
- W2116220981 creator A5050416778 @default.
- W2116220981 date "2010-07-05" @default.
- W2116220981 modified "2023-10-17" @default.
- W2116220981 title "On the sampling of web images for learning visual concept classifiers" @default.
- W2116220981 cites W1978577143 @default.
- W2116220981 cites W1986482242 @default.
- W2116220981 cites W2003621468 @default.
- W2116220981 cites W2007972815 @default.
- W2116220981 cites W2018573225 @default.
- W2116220981 cites W2025363509 @default.
- W2116220981 cites W2042178278 @default.
- W2116220981 cites W2069942113 @default.
- W2116220981 cites W2070959357 @default.
- W2116220981 cites W2080289064 @default.
- W2116220981 cites W2094753663 @default.
- W2116220981 cites W2114776209 @default.
- W2116220981 cites W2138079527 @default.
- W2116220981 cites W2147668753 @default.
- W2116220981 cites W2148698197 @default.
- W2116220981 cites W2148809503 @default.
- W2116220981 cites W2151532250 @default.
- W2116220981 cites W2161258050 @default.
- W2116220981 cites W2913081710 @default.
- W2116220981 doi "https://doi.org/10.1145/1816041.1816051" @default.
- W2116220981 hasPublicationYear "2010" @default.
- W2116220981 type Work @default.
- W2116220981 sameAs 2116220981 @default.
- W2116220981 citedByCount "30" @default.
- W2116220981 countsByYear W21162209812012 @default.
- W2116220981 countsByYear W21162209812013 @default.
- W2116220981 countsByYear W21162209812014 @default.
- W2116220981 countsByYear W21162209812015 @default.
- W2116220981 countsByYear W21162209812016 @default.
- W2116220981 countsByYear W21162209812017 @default.
- W2116220981 countsByYear W21162209812018 @default.
- W2116220981 crossrefType "proceedings-article" @default.
- W2116220981 hasAuthorship W2116220981A5002829835 @default.
- W2116220981 hasAuthorship W2116220981A5030921116 @default.
- W2116220981 hasAuthorship W2116220981A5047962986 @default.
- W2116220981 hasAuthorship W2116220981A5050416778 @default.
- W2116220981 hasBestOaLocation W21162209812 @default.
- W2116220981 hasConcept C106131492 @default.
- W2116220981 hasConcept C119857082 @default.
- W2116220981 hasConcept C140779682 @default.
- W2116220981 hasConcept C153180895 @default.
- W2116220981 hasConcept C154945302 @default.
- W2116220981 hasConcept C31972630 @default.
- W2116220981 hasConcept C41008148 @default.
- W2116220981 hasConceptScore W2116220981C106131492 @default.
- W2116220981 hasConceptScore W2116220981C119857082 @default.
- W2116220981 hasConceptScore W2116220981C140779682 @default.
- W2116220981 hasConceptScore W2116220981C153180895 @default.
- W2116220981 hasConceptScore W2116220981C154945302 @default.
- W2116220981 hasConceptScore W2116220981C31972630 @default.
- W2116220981 hasConceptScore W2116220981C41008148 @default.
- W2116220981 hasFunder F4320321592 @default.
- W2116220981 hasLocation W21162209811 @default.
- W2116220981 hasLocation W21162209812 @default.
- W2116220981 hasLocation W21162209813 @default.
- W2116220981 hasOpenAccess W2116220981 @default.
- W2116220981 hasPrimaryLocation W21162209811 @default.
- W2116220981 hasRelatedWork W1891287906 @default.
- W2116220981 hasRelatedWork W1969923398 @default.
- W2116220981 hasRelatedWork W2036807459 @default.
- W2116220981 hasRelatedWork W2058170566 @default.
- W2116220981 hasRelatedWork W2229312674 @default.
- W2116220981 hasRelatedWork W2755342338 @default.
- W2116220981 hasRelatedWork W2772917594 @default.
- W2116220981 hasRelatedWork W2961085424 @default.
- W2116220981 hasRelatedWork W3116076068 @default.
- W2116220981 hasRelatedWork W4306674287 @default.
- W2116220981 isParatext "false" @default.
- W2116220981 isRetracted "false" @default.
- W2116220981 magId "2116220981" @default.
- W2116220981 workType "article" @default.