Matches in SemOpenAlex for { <https://semopenalex.org/work/W2116496166> ?p ?o ?g. }
- W2116496166 endingPage "220" @default.
- W2116496166 startingPage "216" @default.
- W2116496166 abstract "Inertial sensors are now sufficiently small and lightweight to be used for the collection of large datasets of both humans and animals. However, processing of these large datasets requires a certain degree of automation to achieve realistic workloads. Hidden Markov models (HMMs) are widely used stochastic pattern recognition tools and enable classification of non-stationary data. Here we apply HMMs to identify and segment into strides, data collected from a trunk-mounted six degrees of freedom inertial sensor in galloping Thoroughbred racehorses. A data set comprising mixed gait sequences from seven horses was subdivided into training, cross-validation and independent test set. Manual gallop stride segmentations were created and used for training as well as for evaluating cross-validation and test set performance. On the test set, 91% of the strides were accurately detected to lie within +/- 40 ms (< 10% stride time) of the manually segmented stride starts. While the automated system did not miss any of the strides, it identified additional gallop strides at the beginning of the trials. In the light of increasing use of inertial sensors for ambulatory measurements in clinical settings, automated processing techniques will be required for efficient data processing to enable instantaneous decision making from large amounts of data. In this context, automation is essential to gain optimal benefits from the potentially increased statistical power associated with large numbers of strides that can be collected in a relatively short period of time. We propose the use of HMM-based classifiers since they are easy to implement. In the present study, consistent results across cross-validation and test set were achieved with limited training data." @default.
- W2116496166 created "2016-06-24" @default.
- W2116496166 creator A5022799647 @default.
- W2116496166 creator A5083645031 @default.
- W2116496166 creator A5085472228 @default.
- W2116496166 creator A5090343464 @default.
- W2116496166 date "2008-01-01" @default.
- W2116496166 modified "2023-10-06" @default.
- W2116496166 title "A hidden Markov model-based stride segmentation technique applied to equine inertial sensor trunk movement data" @default.
- W2116496166 cites W1503207992 @default.
- W2116496166 cites W1979043322 @default.
- W2116496166 cites W1991133427 @default.
- W2116496166 cites W2007321142 @default.
- W2116496166 cites W2020496717 @default.
- W2116496166 cites W2046805906 @default.
- W2116496166 cites W2120087301 @default.
- W2116496166 cites W2125838338 @default.
- W2116496166 cites W2126821206 @default.
- W2116496166 cites W2126979765 @default.
- W2116496166 cites W2158581884 @default.
- W2116496166 cites W2161201723 @default.
- W2116496166 cites W2172284735 @default.
- W2116496166 doi "https://doi.org/10.1016/j.jbiomech.2007.08.004" @default.
- W2116496166 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/17897652" @default.
- W2116496166 hasPublicationYear "2008" @default.
- W2116496166 type Work @default.
- W2116496166 sameAs 2116496166 @default.
- W2116496166 citedByCount "45" @default.
- W2116496166 countsByYear W21164961662012 @default.
- W2116496166 countsByYear W21164961662013 @default.
- W2116496166 countsByYear W21164961662014 @default.
- W2116496166 countsByYear W21164961662015 @default.
- W2116496166 countsByYear W21164961662016 @default.
- W2116496166 countsByYear W21164961662018 @default.
- W2116496166 countsByYear W21164961662019 @default.
- W2116496166 countsByYear W21164961662020 @default.
- W2116496166 countsByYear W21164961662021 @default.
- W2116496166 countsByYear W21164961662022 @default.
- W2116496166 countsByYear W21164961662023 @default.
- W2116496166 crossrefType "journal-article" @default.
- W2116496166 hasAuthorship W2116496166A5022799647 @default.
- W2116496166 hasAuthorship W2116496166A5083645031 @default.
- W2116496166 hasAuthorship W2116496166A5085472228 @default.
- W2116496166 hasAuthorship W2116496166A5090343464 @default.
- W2116496166 hasConcept C119857082 @default.
- W2116496166 hasConcept C151730666 @default.
- W2116496166 hasConcept C151800584 @default.
- W2116496166 hasConcept C153180895 @default.
- W2116496166 hasConcept C154945302 @default.
- W2116496166 hasConcept C16910744 @default.
- W2116496166 hasConcept C169903167 @default.
- W2116496166 hasConcept C177264268 @default.
- W2116496166 hasConcept C18007350 @default.
- W2116496166 hasConcept C199360897 @default.
- W2116496166 hasConcept C23224414 @default.
- W2116496166 hasConcept C2779343474 @default.
- W2116496166 hasConcept C38652104 @default.
- W2116496166 hasConcept C41008148 @default.
- W2116496166 hasConcept C42407357 @default.
- W2116496166 hasConcept C58489278 @default.
- W2116496166 hasConcept C79061980 @default.
- W2116496166 hasConcept C86803240 @default.
- W2116496166 hasConcept C89600930 @default.
- W2116496166 hasConceptScore W2116496166C119857082 @default.
- W2116496166 hasConceptScore W2116496166C151730666 @default.
- W2116496166 hasConceptScore W2116496166C151800584 @default.
- W2116496166 hasConceptScore W2116496166C153180895 @default.
- W2116496166 hasConceptScore W2116496166C154945302 @default.
- W2116496166 hasConceptScore W2116496166C16910744 @default.
- W2116496166 hasConceptScore W2116496166C169903167 @default.
- W2116496166 hasConceptScore W2116496166C177264268 @default.
- W2116496166 hasConceptScore W2116496166C18007350 @default.
- W2116496166 hasConceptScore W2116496166C199360897 @default.
- W2116496166 hasConceptScore W2116496166C23224414 @default.
- W2116496166 hasConceptScore W2116496166C2779343474 @default.
- W2116496166 hasConceptScore W2116496166C38652104 @default.
- W2116496166 hasConceptScore W2116496166C41008148 @default.
- W2116496166 hasConceptScore W2116496166C42407357 @default.
- W2116496166 hasConceptScore W2116496166C58489278 @default.
- W2116496166 hasConceptScore W2116496166C79061980 @default.
- W2116496166 hasConceptScore W2116496166C86803240 @default.
- W2116496166 hasConceptScore W2116496166C89600930 @default.
- W2116496166 hasIssue "1" @default.
- W2116496166 hasLocation W21164961661 @default.
- W2116496166 hasLocation W21164961662 @default.
- W2116496166 hasOpenAccess W2116496166 @default.
- W2116496166 hasPrimaryLocation W21164961661 @default.
- W2116496166 hasRelatedWork W1574942924 @default.
- W2116496166 hasRelatedWork W2027071967 @default.
- W2116496166 hasRelatedWork W2028462208 @default.
- W2116496166 hasRelatedWork W2187490799 @default.
- W2116496166 hasRelatedWork W2363004085 @default.
- W2116496166 hasRelatedWork W2794169986 @default.
- W2116496166 hasRelatedWork W2982831492 @default.
- W2116496166 hasRelatedWork W3094735304 @default.
- W2116496166 hasRelatedWork W3138055416 @default.
- W2116496166 hasRelatedWork W4285337533 @default.
- W2116496166 hasVolume "41" @default.