Matches in SemOpenAlex for { <https://semopenalex.org/work/W2116498086> ?p ?o ?g. }
- W2116498086 endingPage "e97725" @default.
- W2116498086 startingPage "e97725" @default.
- W2116498086 abstract "Protein-RNA interactions are central to essential cellular processes such as protein synthesis and regulation of gene expression and play roles in human infectious and genetic diseases. Reliable identification of protein-RNA interfaces is critical for understanding the structural bases and functional implications of such interactions and for developing effective approaches to rational drug design. Sequence-based computational methods offer a viable, cost-effective way to identify putative RNA-binding residues in RNA-binding proteins. Here we report two novel approaches: (i) HomPRIP, a sequence homology-based method for predicting RNA-binding sites in proteins; (ii) RNABindRPlus, a new method that combines predictions from HomPRIP with those from an optimized Support Vector Machine (SVM) classifier trained on a benchmark dataset of 198 RNA-binding proteins. Although highly reliable, HomPRIP cannot make predictions for the unaligned parts of query proteins and its coverage is limited by the availability of close sequence homologs of the query protein with experimentally determined RNA-binding sites. RNABindRPlus overcomes these limitations. We compared the performance of HomPRIP and RNABindRPlus with that of several state-of-the-art predictors on two test sets, RB44 and RB111. On a subset of proteins for which homologs with experimentally determined interfaces could be reliably identified, HomPRIP outperformed all other methods achieving an MCC of 0.63 on RB44 and 0.83 on RB111. RNABindRPlus was able to predict RNA-binding residues of all proteins in both test sets, achieving an MCC of 0.55 and 0.37, respectively, and outperforming all other methods, including those that make use of structure-derived features of proteins. More importantly, RNABindRPlus outperforms all other methods for any choice of tradeoff between precision and recall. An important advantage of both HomPRIP and RNABindRPlus is that they rely on readily available sequence and sequence-derived features of RNA-binding proteins. A webserver implementation of both methods is freely available at http://einstein.cs.iastate.edu/RNABindRPlus/." @default.
- W2116498086 created "2016-06-24" @default.
- W2116498086 creator A5004737962 @default.
- W2116498086 creator A5036878383 @default.
- W2116498086 creator A5047894790 @default.
- W2116498086 creator A5074103258 @default.
- W2116498086 creator A5079233454 @default.
- W2116498086 creator A5086880868 @default.
- W2116498086 date "2014-05-20" @default.
- W2116498086 modified "2023-09-30" @default.
- W2116498086 title "RNABindRPlus: A Predictor that Combines Machine Learning and Sequence Homology-Based Methods to Improve the Reliability of Predicted RNA-Binding Residues in Proteins" @default.
- W2116498086 cites W1502372250 @default.
- W2116498086 cites W1964855333 @default.
- W2116498086 cites W1967996828 @default.
- W2116498086 cites W1971894358 @default.
- W2116498086 cites W1976260744 @default.
- W2116498086 cites W1976364879 @default.
- W2116498086 cites W1981699148 @default.
- W2116498086 cites W1992326565 @default.
- W2116498086 cites W1993857983 @default.
- W2116498086 cites W2001952613 @default.
- W2116498086 cites W2007296839 @default.
- W2116498086 cites W2007372000 @default.
- W2116498086 cites W2007922755 @default.
- W2116498086 cites W2012411040 @default.
- W2116498086 cites W2013782508 @default.
- W2116498086 cites W2014499409 @default.
- W2116498086 cites W2020016327 @default.
- W2116498086 cites W2021703339 @default.
- W2116498086 cites W2028042062 @default.
- W2116498086 cites W2039294169 @default.
- W2116498086 cites W2044955175 @default.
- W2116498086 cites W2047544230 @default.
- W2116498086 cites W2059191987 @default.
- W2116498086 cites W2060078754 @default.
- W2116498086 cites W2064515831 @default.
- W2116498086 cites W2064820767 @default.
- W2116498086 cites W2068029278 @default.
- W2116498086 cites W2070777085 @default.
- W2116498086 cites W2072284383 @default.
- W2116498086 cites W2081724853 @default.
- W2116498086 cites W2089652064 @default.
- W2116498086 cites W2094173044 @default.
- W2116498086 cites W2096236743 @default.
- W2116498086 cites W2097694646 @default.
- W2116498086 cites W2102406695 @default.
- W2116498086 cites W2103505761 @default.
- W2116498086 cites W2106393550 @default.
- W2116498086 cites W2107432340 @default.
- W2116498086 cites W2109300715 @default.
- W2116498086 cites W2113424035 @default.
- W2116498086 cites W2114520383 @default.
- W2116498086 cites W2119493141 @default.
- W2116498086 cites W2119948329 @default.
- W2116498086 cites W2120777670 @default.
- W2116498086 cites W2124463526 @default.
- W2116498086 cites W2124974356 @default.
- W2116498086 cites W2125741255 @default.
- W2116498086 cites W2130479394 @default.
- W2116498086 cites W2131571100 @default.
- W2116498086 cites W2132328103 @default.
- W2116498086 cites W2138770756 @default.
- W2116498086 cites W2139373949 @default.
- W2116498086 cites W2139895148 @default.
- W2116498086 cites W2144476269 @default.
- W2116498086 cites W2145126338 @default.
- W2116498086 cites W2149982649 @default.
- W2116498086 cites W2153153865 @default.
- W2116498086 cites W2153826038 @default.
- W2116498086 cites W2156125289 @default.
- W2116498086 cites W2156215828 @default.
- W2116498086 cites W2156558709 @default.
- W2116498086 cites W2158714788 @default.
- W2116498086 cites W2160776120 @default.
- W2116498086 cites W2168055922 @default.
- W2116498086 cites W2168272116 @default.
- W2116498086 cites W2170747616 @default.
- W2116498086 doi "https://doi.org/10.1371/journal.pone.0097725" @default.
- W2116498086 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4028231" @default.
- W2116498086 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24846307" @default.
- W2116498086 hasPublicationYear "2014" @default.
- W2116498086 type Work @default.
- W2116498086 sameAs 2116498086 @default.
- W2116498086 citedByCount "87" @default.
- W2116498086 countsByYear W21164980862015 @default.
- W2116498086 countsByYear W21164980862016 @default.
- W2116498086 countsByYear W21164980862017 @default.
- W2116498086 countsByYear W21164980862018 @default.
- W2116498086 countsByYear W21164980862019 @default.
- W2116498086 countsByYear W21164980862020 @default.
- W2116498086 countsByYear W21164980862021 @default.
- W2116498086 countsByYear W21164980862022 @default.
- W2116498086 countsByYear W21164980862023 @default.
- W2116498086 crossrefType "journal-article" @default.
- W2116498086 hasAuthorship W2116498086A5004737962 @default.
- W2116498086 hasAuthorship W2116498086A5036878383 @default.
- W2116498086 hasAuthorship W2116498086A5047894790 @default.
- W2116498086 hasAuthorship W2116498086A5074103258 @default.