Matches in SemOpenAlex for { <https://semopenalex.org/work/W2116657070> ?p ?o ?g. }
- W2116657070 endingPage "2737" @default.
- W2116657070 startingPage "2726" @default.
- W2116657070 abstract "Abstract Motivation: Microarray technology has become a powerful research tool in many fields of study; however, the cost of microarrays often results in the use of a low number of replicates (k). Under circumstances where k is low, it becomes difficult to perform standard statistical tests to extract the most biologically significant experimental results. Other more advanced statistical tests have been developed; however, their use and interpretation often remain difficult to implement in routine biological research. The present work outlines a method that achieves sufficient statistical power for selecting differentially expressed genes under conditions of low k, while remaining as an intuitive and computationally efficient procedure. Results: The present study describes a Global Error Assessment (GEA) methodology to select differentially expressed genes in microarray datasets, and was developed using an in vitro experiment that compared control and interferon-γ treated skin cells. In this experiment, up to nine replicates were used to confidently estimate error, thereby enabling methods of different statistical power to be compared. Gene expression results of a similar absolute expression are binned, so as to enable a highly accurate local estimate of the mean squared error within conditions. The model then relates variability of gene expression in each bin to absolute expression levels and uses this in a test derived from the classical ANOVA. The GEA selection method is compared with both the classical and permutational ANOVA tests, and demonstrates an increased stability, robustness and confidence in gene selection. A subset of the selected genes were validated by real-time reverse transcription–polymerase chain reaction (RT–PCR). All these results suggest that GEA methodology is (i) suitable for selection of differentially expressed genes in microarray data, (ii) intuitive and computationally efficient and (iii) especially advantageous under conditions of low k. Availability: The GEA code for R software is freely available upon request to authors." @default.
- W2116657070 created "2016-06-24" @default.
- W2116657070 creator A5002790480 @default.
- W2116657070 creator A5011079449 @default.
- W2116657070 creator A5011804307 @default.
- W2116657070 creator A5014631117 @default.
- W2116657070 creator A5020794315 @default.
- W2116657070 creator A5056054318 @default.
- W2116657070 creator A5067403839 @default.
- W2116657070 creator A5070772007 @default.
- W2116657070 creator A5074634249 @default.
- W2116657070 creator A5075711347 @default.
- W2116657070 creator A5076642074 @default.
- W2116657070 date "2004-05-14" @default.
- W2116657070 modified "2023-10-13" @default.
- W2116657070 title "The Global Error Assessment (GEA) model for the selection of differentially expressed genes in microarray data" @default.
- W2116657070 cites W1544923801 @default.
- W2116657070 cites W1570354362 @default.
- W2116657070 cites W1594655861 @default.
- W2116657070 cites W1596357427 @default.
- W2116657070 cites W1893505266 @default.
- W2116657070 cites W1976625175 @default.
- W2116657070 cites W1982516880 @default.
- W2116657070 cites W1993730176 @default.
- W2116657070 cites W2002984698 @default.
- W2116657070 cites W2022128518 @default.
- W2116657070 cites W2036611612 @default.
- W2116657070 cites W2059032249 @default.
- W2116657070 cites W2059658016 @default.
- W2116657070 cites W2075413744 @default.
- W2116657070 cites W2082009343 @default.
- W2116657070 cites W2088844778 @default.
- W2116657070 cites W2098704098 @default.
- W2116657070 cites W2109972881 @default.
- W2116657070 cites W2114969819 @default.
- W2116657070 cites W2115137285 @default.
- W2116657070 cites W2118659478 @default.
- W2116657070 cites W2120789502 @default.
- W2116657070 cites W2120865735 @default.
- W2116657070 cites W2123172482 @default.
- W2116657070 cites W2131322950 @default.
- W2116657070 cites W2133210805 @default.
- W2116657070 cites W2139290043 @default.
- W2116657070 cites W2141407136 @default.
- W2116657070 cites W2144227498 @default.
- W2116657070 cites W2146614932 @default.
- W2116657070 cites W2155379600 @default.
- W2116657070 cites W2167283581 @default.
- W2116657070 cites W2172135350 @default.
- W2116657070 cites W2173560213 @default.
- W2116657070 doi "https://doi.org/10.1093/bioinformatics/bth319" @default.
- W2116657070 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/15145801" @default.
- W2116657070 hasPublicationYear "2004" @default.
- W2116657070 type Work @default.
- W2116657070 sameAs 2116657070 @default.
- W2116657070 citedByCount "31" @default.
- W2116657070 countsByYear W21166570702012 @default.
- W2116657070 countsByYear W21166570702013 @default.
- W2116657070 countsByYear W21166570702014 @default.
- W2116657070 crossrefType "journal-article" @default.
- W2116657070 hasAuthorship W2116657070A5002790480 @default.
- W2116657070 hasAuthorship W2116657070A5011079449 @default.
- W2116657070 hasAuthorship W2116657070A5011804307 @default.
- W2116657070 hasAuthorship W2116657070A5014631117 @default.
- W2116657070 hasAuthorship W2116657070A5020794315 @default.
- W2116657070 hasAuthorship W2116657070A5056054318 @default.
- W2116657070 hasAuthorship W2116657070A5067403839 @default.
- W2116657070 hasAuthorship W2116657070A5070772007 @default.
- W2116657070 hasAuthorship W2116657070A5074634249 @default.
- W2116657070 hasAuthorship W2116657070A5075711347 @default.
- W2116657070 hasAuthorship W2116657070A5076642074 @default.
- W2116657070 hasBestOaLocation W21166570701 @default.
- W2116657070 hasConcept C104317684 @default.
- W2116657070 hasConcept C105795698 @default.
- W2116657070 hasConcept C119857082 @default.
- W2116657070 hasConcept C124101348 @default.
- W2116657070 hasConcept C150194340 @default.
- W2116657070 hasConcept C183905921 @default.
- W2116657070 hasConcept C18431079 @default.
- W2116657070 hasConcept C24361400 @default.
- W2116657070 hasConcept C33923547 @default.
- W2116657070 hasConcept C41008148 @default.
- W2116657070 hasConcept C54355233 @default.
- W2116657070 hasConcept C63479239 @default.
- W2116657070 hasConcept C70721500 @default.
- W2116657070 hasConcept C81917197 @default.
- W2116657070 hasConcept C8415881 @default.
- W2116657070 hasConcept C86803240 @default.
- W2116657070 hasConcept C87007009 @default.
- W2116657070 hasConcept C95371953 @default.
- W2116657070 hasConcept C96608239 @default.
- W2116657070 hasConceptScore W2116657070C104317684 @default.
- W2116657070 hasConceptScore W2116657070C105795698 @default.
- W2116657070 hasConceptScore W2116657070C119857082 @default.
- W2116657070 hasConceptScore W2116657070C124101348 @default.
- W2116657070 hasConceptScore W2116657070C150194340 @default.
- W2116657070 hasConceptScore W2116657070C183905921 @default.
- W2116657070 hasConceptScore W2116657070C18431079 @default.