Matches in SemOpenAlex for { <https://semopenalex.org/work/W2116692433> ?p ?o ?g. }
- W2116692433 endingPage "487" @default.
- W2116692433 startingPage "480" @default.
- W2116692433 abstract "Few predictive models aimed at predicting the presence of lymph node invasion (LNI) in patients with prostate cancer (PCa) treated with extended pelvic lymph node dissection (ePLND) are available to date.Update a nomogram predicting the presence of LNI in patients treated with ePLND at the time of radical prostatectomy (RP).The study included 588 patients with clinically localised PCa treated between September 2006 and October 2010 at a single tertiary referral centre.All patients underwent RP and ePLND invariably including removal of obturator, external iliac, and hypogastric nodes.Prostate-specific antigen, clinical stage, and primary and secondary biopsy Gleason grade as well as percentage of positive cores were included in univariable (UVA) and multivariable (MVA) logistic regression models predicting LNI and formed the basis for the regression coefficient-based nomogram. The area under the curve (AUC) method was used to quantify the predictive accuracy (PA) of the model.The mean number of lymph nodes removed and examined was 20.8 (median: 19; range: 10-52). LNI was found in 49 of 588 patients (8.3%). All preoperative PCa characteristics differed significantly between LNI-positive and LNI-negative patients (all p<0.001). In UVA predictive accuracy analyses, percentage of positive cores was the most accurate predictor of LNI (AUC: 79.5%). At MVA, clinical stage, primary biopsy Gleason grade, and percentage of positive cores were independent predictors of LNI (all p≤0.006). The updated nomogram demonstrated a bootstrap-corrected PA of 87.6%. Using a 5% nomogram cut-off, 385 of 588 patients (65.5%) would be spared ePLND. and LNI would be missed in only 6 patients (1.5%). The sensitivity, specificity, and negative predictive value associated with the 5% cut-off were 87.8%, 70.3%, and 98.4%, respectively. The relatively low number of patients included as well as the lack of an external validation represent the main limitations of our study.We report the first update of a nomogram predicting the presence of LNI in patients treated with ePLND. The nomogram maintained high accuracy, even in more contemporary patients (87.6%). Because percentage of positive cores represents the foremost predictor of LNI, its inclusion should be mandatory in any LNI prediction model. Based on our model, those patients with a LNI risk<5% might be safely spared ePLND." @default.
- W2116692433 created "2016-06-24" @default.
- W2116692433 creator A5022182189 @default.
- W2116692433 creator A5031550729 @default.
- W2116692433 creator A5038974730 @default.
- W2116692433 creator A5039363062 @default.
- W2116692433 creator A5044228660 @default.
- W2116692433 creator A5051984796 @default.
- W2116692433 creator A5054660525 @default.
- W2116692433 creator A5057587736 @default.
- W2116692433 creator A5059157811 @default.
- W2116692433 creator A5060378122 @default.
- W2116692433 creator A5061623935 @default.
- W2116692433 creator A5063971650 @default.
- W2116692433 creator A5071652086 @default.
- W2116692433 date "2012-03-01" @default.
- W2116692433 modified "2023-10-18" @default.
- W2116692433 title "Updated Nomogram Predicting Lymph Node Invasion in Patients with Prostate Cancer Undergoing Extended Pelvic Lymph Node Dissection: The Essential Importance of Percentage of Positive Cores" @default.
- W2116692433 cites W1521920427 @default.
- W2116692433 cites W1831160500 @default.
- W2116692433 cites W1975388728 @default.
- W2116692433 cites W1978801336 @default.
- W2116692433 cites W1983145936 @default.
- W2116692433 cites W1986947861 @default.
- W2116692433 cites W1996587036 @default.
- W2116692433 cites W1998068623 @default.
- W2116692433 cites W2004625759 @default.
- W2116692433 cites W2012690520 @default.
- W2116692433 cites W2029446289 @default.
- W2116692433 cites W2037073425 @default.
- W2116692433 cites W2039978974 @default.
- W2116692433 cites W2048516791 @default.
- W2116692433 cites W2071727133 @default.
- W2116692433 cites W2075007329 @default.
- W2116692433 cites W2075338951 @default.
- W2116692433 cites W2113699255 @default.
- W2116692433 cites W2115318189 @default.
- W2116692433 cites W2116773250 @default.
- W2116692433 cites W2137571400 @default.
- W2116692433 cites W2142395600 @default.
- W2116692433 cites W2146822966 @default.
- W2116692433 cites W2147437793 @default.
- W2116692433 cites W2160144380 @default.
- W2116692433 cites W2165217523 @default.
- W2116692433 cites W49263098 @default.
- W2116692433 doi "https://doi.org/10.1016/j.eururo.2011.10.044" @default.
- W2116692433 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22078338" @default.
- W2116692433 hasPublicationYear "2012" @default.
- W2116692433 type Work @default.
- W2116692433 sameAs 2116692433 @default.
- W2116692433 citedByCount "571" @default.
- W2116692433 countsByYear W21166924332012 @default.
- W2116692433 countsByYear W21166924332013 @default.
- W2116692433 countsByYear W21166924332014 @default.
- W2116692433 countsByYear W21166924332015 @default.
- W2116692433 countsByYear W21166924332016 @default.
- W2116692433 countsByYear W21166924332017 @default.
- W2116692433 countsByYear W21166924332018 @default.
- W2116692433 countsByYear W21166924332019 @default.
- W2116692433 countsByYear W21166924332020 @default.
- W2116692433 countsByYear W21166924332021 @default.
- W2116692433 countsByYear W21166924332022 @default.
- W2116692433 countsByYear W21166924332023 @default.
- W2116692433 crossrefType "journal-article" @default.
- W2116692433 hasAuthorship W2116692433A5022182189 @default.
- W2116692433 hasAuthorship W2116692433A5031550729 @default.
- W2116692433 hasAuthorship W2116692433A5038974730 @default.
- W2116692433 hasAuthorship W2116692433A5039363062 @default.
- W2116692433 hasAuthorship W2116692433A5044228660 @default.
- W2116692433 hasAuthorship W2116692433A5051984796 @default.
- W2116692433 hasAuthorship W2116692433A5054660525 @default.
- W2116692433 hasAuthorship W2116692433A5057587736 @default.
- W2116692433 hasAuthorship W2116692433A5059157811 @default.
- W2116692433 hasAuthorship W2116692433A5060378122 @default.
- W2116692433 hasAuthorship W2116692433A5061623935 @default.
- W2116692433 hasAuthorship W2116692433A5063971650 @default.
- W2116692433 hasAuthorship W2116692433A5071652086 @default.
- W2116692433 hasConcept C121608353 @default.
- W2116692433 hasConcept C126322002 @default.
- W2116692433 hasConcept C126838900 @default.
- W2116692433 hasConcept C126894567 @default.
- W2116692433 hasConcept C142724271 @default.
- W2116692433 hasConcept C143998085 @default.
- W2116692433 hasConcept C146357865 @default.
- W2116692433 hasConcept C151730666 @default.
- W2116692433 hasConcept C151956035 @default.
- W2116692433 hasConcept C2775862295 @default.
- W2116692433 hasConcept C2775934546 @default.
- W2116692433 hasConcept C2779466945 @default.
- W2116692433 hasConcept C2779720271 @default.
- W2116692433 hasConcept C2780091936 @default.
- W2116692433 hasConcept C2780192828 @default.
- W2116692433 hasConcept C2780849966 @default.
- W2116692433 hasConcept C34626388 @default.
- W2116692433 hasConcept C71924100 @default.
- W2116692433 hasConcept C86803240 @default.
- W2116692433 hasConceptScore W2116692433C121608353 @default.
- W2116692433 hasConceptScore W2116692433C126322002 @default.