Matches in SemOpenAlex for { <https://semopenalex.org/work/W2116712833> ?p ?o ?g. }
- W2116712833 endingPage "35" @default.
- W2116712833 startingPage "22" @default.
- W2116712833 abstract "The present paper deals with exploring the use of Artificial Neural Networks (ANN) for forecasting the Blue Nile river flows in Sudan. Four ANN rainfall–runoff models based on the structure of the well-known multi-layer perceptron are developed. These models use the rainfall index as a common external input, with the rainfall index being a weighted sum of the recent and current rainfall. These models differ in terms of the additional external inputs being used by the model. The additional inputs are basically the seasonal expectations of both the rainfall index and the observed discharge. The results show that the model, which uses both the seasonal expectation of the observed discharge and the rainfall index as additional inputs, has the best performance. The estimated discharges of this model are further updated using a non-linear Auto-Regressive Exogenous-input model (NARXM)-ANN river flow forecasting output-updating procedure. In this way, a real-time river flow forecasting model is developed. The results show that the forecast updating has significantly enhanced the quality of the discharge forecasts. The results also indicate that the ANN has considerable potential to be used for river flow forecasting in developing countries." @default.
- W2116712833 created "2016-06-24" @default.
- W2116712833 creator A5072299993 @default.
- W2116712833 date "2009-09-01" @default.
- W2116712833 modified "2023-10-02" @default.
- W2116712833 title "Artificial neural network model for river flow forecasting in a developing country" @default.
- W2116712833 cites W161184636 @default.
- W2116712833 cites W1846511332 @default.
- W2116712833 cites W1964349537 @default.
- W2116712833 cites W1969942076 @default.
- W2116712833 cites W1980597395 @default.
- W2116712833 cites W1981569342 @default.
- W2116712833 cites W1986420138 @default.
- W2116712833 cites W1989543665 @default.
- W2116712833 cites W1998442441 @default.
- W2116712833 cites W2004630602 @default.
- W2116712833 cites W2007396336 @default.
- W2116712833 cites W2016134408 @default.
- W2116712833 cites W2017198208 @default.
- W2116712833 cites W2017587036 @default.
- W2116712833 cites W2028080292 @default.
- W2116712833 cites W2033904036 @default.
- W2116712833 cites W2050081059 @default.
- W2116712833 cites W2051199885 @default.
- W2116712833 cites W2061173920 @default.
- W2116712833 cites W2062116877 @default.
- W2116712833 cites W2063046964 @default.
- W2116712833 cites W2065902166 @default.
- W2116712833 cites W2090370442 @default.
- W2116712833 cites W2093762337 @default.
- W2116712833 cites W2094312930 @default.
- W2116712833 cites W2098525460 @default.
- W2116712833 cites W2102976542 @default.
- W2116712833 cites W2114824684 @default.
- W2116712833 cites W2118577011 @default.
- W2116712833 cites W2149229403 @default.
- W2116712833 cites W2171074980 @default.
- W2116712833 cites W2232238919 @default.
- W2116712833 cites W2294845789 @default.
- W2116712833 cites W2341283081 @default.
- W2116712833 cites W235151384 @default.
- W2116712833 cites W2481690158 @default.
- W2116712833 cites W2490907802 @default.
- W2116712833 cites W2496489056 @default.
- W2116712833 cites W2497076413 @default.
- W2116712833 cites W603008773 @default.
- W2116712833 cites W2473337561 @default.
- W2116712833 doi "https://doi.org/10.2166/hydro.2010.027" @default.
- W2116712833 hasPublicationYear "2009" @default.
- W2116712833 type Work @default.
- W2116712833 sameAs 2116712833 @default.
- W2116712833 citedByCount "63" @default.
- W2116712833 countsByYear W21167128332012 @default.
- W2116712833 countsByYear W21167128332013 @default.
- W2116712833 countsByYear W21167128332014 @default.
- W2116712833 countsByYear W21167128332015 @default.
- W2116712833 countsByYear W21167128332016 @default.
- W2116712833 countsByYear W21167128332017 @default.
- W2116712833 countsByYear W21167128332018 @default.
- W2116712833 countsByYear W21167128332019 @default.
- W2116712833 countsByYear W21167128332020 @default.
- W2116712833 countsByYear W21167128332021 @default.
- W2116712833 countsByYear W21167128332022 @default.
- W2116712833 countsByYear W21167128332023 @default.
- W2116712833 crossrefType "journal-article" @default.
- W2116712833 hasAuthorship W2116712833A5072299993 @default.
- W2116712833 hasBestOaLocation W21167128331 @default.
- W2116712833 hasConcept C126645576 @default.
- W2116712833 hasConcept C136764020 @default.
- W2116712833 hasConcept C149782125 @default.
- W2116712833 hasConcept C153294291 @default.
- W2116712833 hasConcept C154945302 @default.
- W2116712833 hasConcept C179717631 @default.
- W2116712833 hasConcept C205649164 @default.
- W2116712833 hasConcept C2524010 @default.
- W2116712833 hasConcept C2777382242 @default.
- W2116712833 hasConcept C33923547 @default.
- W2116712833 hasConcept C38349280 @default.
- W2116712833 hasConcept C39432304 @default.
- W2116712833 hasConcept C41008148 @default.
- W2116712833 hasConcept C50644808 @default.
- W2116712833 hasConcept C53739315 @default.
- W2116712833 hasConcept C58640448 @default.
- W2116712833 hasConcept C60908668 @default.
- W2116712833 hasConceptScore W2116712833C126645576 @default.
- W2116712833 hasConceptScore W2116712833C136764020 @default.
- W2116712833 hasConceptScore W2116712833C149782125 @default.
- W2116712833 hasConceptScore W2116712833C153294291 @default.
- W2116712833 hasConceptScore W2116712833C154945302 @default.
- W2116712833 hasConceptScore W2116712833C179717631 @default.
- W2116712833 hasConceptScore W2116712833C205649164 @default.
- W2116712833 hasConceptScore W2116712833C2524010 @default.
- W2116712833 hasConceptScore W2116712833C2777382242 @default.
- W2116712833 hasConceptScore W2116712833C33923547 @default.
- W2116712833 hasConceptScore W2116712833C38349280 @default.
- W2116712833 hasConceptScore W2116712833C39432304 @default.
- W2116712833 hasConceptScore W2116712833C41008148 @default.
- W2116712833 hasConceptScore W2116712833C50644808 @default.