Matches in SemOpenAlex for { <https://semopenalex.org/work/W2116722724> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2116722724 abstract "High-throughput technologies such as DNA, RNA, protein, antibody and peptide microarrays are often used to examine differences across drug treatments, diseases, transgenic animals, and others. Typically one trains a classification system by gathering large amounts of probe-level data, selecting informative features, and classifies test samples using a small number of features. As new microarrays are invented, classification systems that worked well for other array types may not be ideal. Expression microarrays, arguably one of the most prevalent array types, have been used for years to help develop classification algorithms. Many biological assumptions are built into classifiers that were designed for these types of data. One of the more problematic is the assumption of independence, both at the probe level and again at the biological level. Probes for RNA transcripts are designed to bind single transcripts. At the biological level, many genes have dependencies across transcriptional pathways where co-regulation of transcriptional units may make many genes appear as being completely dependent. Thus, algorithms that perform well for gene expression data may not be suitable when other technologies with different binding characteristics exist. The immunosignaturing microarray is based on complex mixtures of antibodies binding to arrays of random sequence peptides. It relies on many-to-many binding of antibodies to the random sequence peptides. Each peptide can bind multiple antibodies and each antibody can bind multiple peptides. This technology has been shown to be highly reproducible and appears promising for diagnosing a variety of disease states. However, it is not clear what is the optimal classification algorithm for analyzing this new type of data.We characterized several classification algorithms to analyze immunosignaturing data. We selected several datasets that range from easy to difficult to classify, from simple monoclonal binding to complex binding patterns in asthma patients. We then classified the biological samples using 17 different classification algorithms. Using a wide variety of assessment criteria, we found 'Naïve Bayes' far more useful than other widely used methods due to its simplicity, robustness, speed and accuracy.'Naïve Bayes' algorithm appears to accommodate the complex patterns hidden within multilayered immunosignaturing microarray data due to its fundamental mathematical properties." @default.
- W2116722724 created "2016-06-24" @default.
- W2116722724 creator A5003748765 @default.
- W2116722724 creator A5052063087 @default.
- W2116722724 creator A5073415783 @default.
- W2116722724 date "2012-06-21" @default.
- W2116722724 modified "2023-10-16" @default.
- W2116722724 title "Comparative study of classification algorithms for immunosignaturing data" @default.
- W2116722724 cites W1817561967 @default.
- W2116722724 cites W1977177161 @default.
- W2116722724 cites W1981039744 @default.
- W2116722724 cites W1994865855 @default.
- W2116722724 cites W2007166874 @default.
- W2116722724 cites W2008233728 @default.
- W2116722724 cites W2013074264 @default.
- W2116722724 cites W2017757915 @default.
- W2116722724 cites W2024046085 @default.
- W2116722724 cites W2030809692 @default.
- W2116722724 cites W2077686961 @default.
- W2116722724 cites W2078064739 @default.
- W2116722724 cites W2080141037 @default.
- W2116722724 cites W2084429764 @default.
- W2116722724 cites W2085080020 @default.
- W2116722724 cites W2095473347 @default.
- W2116722724 cites W2100468749 @default.
- W2116722724 cites W2110298216 @default.
- W2116722724 cites W2114538680 @default.
- W2116722724 cites W2116079122 @default.
- W2116722724 cites W2126222486 @default.
- W2116722724 cites W2128752057 @default.
- W2116722724 cites W2131703061 @default.
- W2116722724 cites W2133990480 @default.
- W2116722724 cites W2135383500 @default.
- W2116722724 cites W2136487516 @default.
- W2116722724 cites W2151040995 @default.
- W2116722724 cites W2167807610 @default.
- W2116722724 cites W2911964244 @default.
- W2116722724 doi "https://doi.org/10.1186/1471-2105-13-139" @default.
- W2116722724 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3430557" @default.
- W2116722724 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22720696" @default.
- W2116722724 hasPublicationYear "2012" @default.
- W2116722724 type Work @default.
- W2116722724 sameAs 2116722724 @default.
- W2116722724 citedByCount "36" @default.
- W2116722724 countsByYear W21167227242012 @default.
- W2116722724 countsByYear W21167227242013 @default.
- W2116722724 countsByYear W21167227242014 @default.
- W2116722724 countsByYear W21167227242015 @default.
- W2116722724 countsByYear W21167227242016 @default.
- W2116722724 countsByYear W21167227242017 @default.
- W2116722724 countsByYear W21167227242018 @default.
- W2116722724 countsByYear W21167227242019 @default.
- W2116722724 countsByYear W21167227242020 @default.
- W2116722724 countsByYear W21167227242021 @default.
- W2116722724 countsByYear W21167227242022 @default.
- W2116722724 countsByYear W21167227242023 @default.
- W2116722724 crossrefType "journal-article" @default.
- W2116722724 hasAuthorship W2116722724A5003748765 @default.
- W2116722724 hasAuthorship W2116722724A5052063087 @default.
- W2116722724 hasAuthorship W2116722724A5073415783 @default.
- W2116722724 hasBestOaLocation W21167227241 @default.
- W2116722724 hasConcept C104317684 @default.
- W2116722724 hasConcept C11413529 @default.
- W2116722724 hasConcept C150194340 @default.
- W2116722724 hasConcept C41008148 @default.
- W2116722724 hasConcept C54355233 @default.
- W2116722724 hasConcept C70721500 @default.
- W2116722724 hasConcept C86803240 @default.
- W2116722724 hasConcept C95371953 @default.
- W2116722724 hasConceptScore W2116722724C104317684 @default.
- W2116722724 hasConceptScore W2116722724C11413529 @default.
- W2116722724 hasConceptScore W2116722724C150194340 @default.
- W2116722724 hasConceptScore W2116722724C41008148 @default.
- W2116722724 hasConceptScore W2116722724C54355233 @default.
- W2116722724 hasConceptScore W2116722724C70721500 @default.
- W2116722724 hasConceptScore W2116722724C86803240 @default.
- W2116722724 hasConceptScore W2116722724C95371953 @default.
- W2116722724 hasIssue "1" @default.
- W2116722724 hasLocation W21167227241 @default.
- W2116722724 hasLocation W21167227242 @default.
- W2116722724 hasLocation W21167227243 @default.
- W2116722724 hasLocation W21167227244 @default.
- W2116722724 hasLocation W21167227245 @default.
- W2116722724 hasOpenAccess W2116722724 @default.
- W2116722724 hasPrimaryLocation W21167227241 @default.
- W2116722724 hasRelatedWork W127431793 @default.
- W2116722724 hasRelatedWork W2009966535 @default.
- W2116722724 hasRelatedWork W2021297725 @default.
- W2116722724 hasRelatedWork W2096761497 @default.
- W2116722724 hasRelatedWork W2117264420 @default.
- W2116722724 hasRelatedWork W2122223946 @default.
- W2116722724 hasRelatedWork W2362947020 @default.
- W2116722724 hasRelatedWork W2385534162 @default.
- W2116722724 hasRelatedWork W3032874291 @default.
- W2116722724 hasRelatedWork W4308995579 @default.
- W2116722724 hasVolume "13" @default.
- W2116722724 isParatext "false" @default.
- W2116722724 isRetracted "false" @default.
- W2116722724 magId "2116722724" @default.
- W2116722724 workType "article" @default.