Matches in SemOpenAlex for { <https://semopenalex.org/work/W2116729592> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2116729592 abstract "This paper presents a Markov chain based approach for the probabilistic density control of a swarm of autonomous “ON-OFF” agents. The proposed approach specifies the time evolution of the probabilistic density distribution by using a Markov chain, which guides the swarm to a desired steady-state final distribution, while satisfying the prescribed ergodicity and safety constraints. Prior research has developed a Markov chain based approach to control swarms of agents with full mobility. The main contribution of the current paper is generalizing this approach to a swarm of ON-OFF agents with limited mobility. We define ON-OFF agents as having limited mobility in the following sense: The agent either conforms to the motion induced by the environment or it remains motionless. This means that an ON-OFF agent has two possible actions, either accept the environmentally induced motion, “ON”, or stop all the motion, “OFF”. By using these binary control actions at the agent level, we develop a decentralized control architecture and algorithms that guide the swarm density distribution to a desired probabilistic density in the operational space. The agents make statistically independent probabilistic decisions on choosing to be “ON” or “OFF” based solely on their own states to achieve a desired swarm density distribution. The probabilistic approach is completely decentralized and does not require communication or collaboration between agents. Of course, any collaboration can be leveraged for better performance, which is the subject of future work. There are two new algorithms developed: An online ON-OFF policy computation method to generate a Markov matrix with the ergodicity and motion constraints but without the safety constraints, which can be viewed as generating a Markov matrix via the Metropolis-Hastings (M-H) algorithm for a given proposal matrix. The second algorithm generates, offline, an ON-OFF policy that also ensures the safety constraints together with the ergodicity and motion constraints. The incorporation of the safety constraints is enabled by our recent result that convexifies the Markov chain synthesis with these constraints." @default.
- W2116729592 created "2016-06-24" @default.
- W2116729592 creator A5003348688 @default.
- W2116729592 creator A5044772884 @default.
- W2116729592 date "2015-07-01" @default.
- W2116729592 modified "2023-09-26" @default.
- W2116729592 title "Probabilistic density control for swarm of decentralized ON-OFF agents with safety constraints" @default.
- W2116729592 cites W1521448640 @default.
- W2116729592 cites W1577803140 @default.
- W2116729592 cites W1972309199 @default.
- W2116729592 cites W1995027900 @default.
- W2116729592 cites W2001076402 @default.
- W2116729592 cites W2006455928 @default.
- W2116729592 cites W2016947536 @default.
- W2116729592 cites W2019473674 @default.
- W2116729592 cites W2021429920 @default.
- W2116729592 cites W2025408923 @default.
- W2116729592 cites W2033057584 @default.
- W2116729592 cites W2039245308 @default.
- W2116729592 cites W2040543362 @default.
- W2116729592 cites W2042741865 @default.
- W2116729592 cites W2066459185 @default.
- W2116729592 cites W2067373847 @default.
- W2116729592 cites W2068017783 @default.
- W2116729592 cites W2105850748 @default.
- W2116729592 cites W2121161036 @default.
- W2116729592 cites W2130308142 @default.
- W2116729592 cites W2133661642 @default.
- W2116729592 cites W2134428241 @default.
- W2116729592 cites W2137642864 @default.
- W2116729592 cites W2138208394 @default.
- W2116729592 cites W2145510175 @default.
- W2116729592 cites W2165744313 @default.
- W2116729592 cites W2167080759 @default.
- W2116729592 cites W2536620281 @default.
- W2116729592 cites W3105329945 @default.
- W2116729592 cites W391578156 @default.
- W2116729592 cites W4237826793 @default.
- W2116729592 doi "https://doi.org/10.1109/acc.2015.7172157" @default.
- W2116729592 hasPublicationYear "2015" @default.
- W2116729592 type Work @default.
- W2116729592 sameAs 2116729592 @default.
- W2116729592 citedByCount "9" @default.
- W2116729592 countsByYear W21167295922016 @default.
- W2116729592 countsByYear W21167295922017 @default.
- W2116729592 countsByYear W21167295922018 @default.
- W2116729592 countsByYear W21167295922022 @default.
- W2116729592 crossrefType "proceedings-article" @default.
- W2116729592 hasAuthorship W2116729592A5003348688 @default.
- W2116729592 hasAuthorship W2116729592A5044772884 @default.
- W2116729592 hasConcept C105795698 @default.
- W2116729592 hasConcept C119857082 @default.
- W2116729592 hasConcept C126255220 @default.
- W2116729592 hasConcept C154945302 @default.
- W2116729592 hasConcept C159886148 @default.
- W2116729592 hasConcept C181335050 @default.
- W2116729592 hasConcept C201779956 @default.
- W2116729592 hasConcept C24404364 @default.
- W2116729592 hasConcept C33923547 @default.
- W2116729592 hasConcept C41008148 @default.
- W2116729592 hasConcept C49937458 @default.
- W2116729592 hasConcept C52063229 @default.
- W2116729592 hasConcept C98763669 @default.
- W2116729592 hasConceptScore W2116729592C105795698 @default.
- W2116729592 hasConceptScore W2116729592C119857082 @default.
- W2116729592 hasConceptScore W2116729592C126255220 @default.
- W2116729592 hasConceptScore W2116729592C154945302 @default.
- W2116729592 hasConceptScore W2116729592C159886148 @default.
- W2116729592 hasConceptScore W2116729592C181335050 @default.
- W2116729592 hasConceptScore W2116729592C201779956 @default.
- W2116729592 hasConceptScore W2116729592C24404364 @default.
- W2116729592 hasConceptScore W2116729592C33923547 @default.
- W2116729592 hasConceptScore W2116729592C41008148 @default.
- W2116729592 hasConceptScore W2116729592C49937458 @default.
- W2116729592 hasConceptScore W2116729592C52063229 @default.
- W2116729592 hasConceptScore W2116729592C98763669 @default.
- W2116729592 hasLocation W21167295921 @default.
- W2116729592 hasOpenAccess W2116729592 @default.
- W2116729592 hasPrimaryLocation W21167295921 @default.
- W2116729592 hasRelatedWork W1497573972 @default.
- W2116729592 hasRelatedWork W1504009014 @default.
- W2116729592 hasRelatedWork W2016947536 @default.
- W2116729592 hasRelatedWork W2025368718 @default.
- W2116729592 hasRelatedWork W2757133052 @default.
- W2116729592 hasRelatedWork W3032717647 @default.
- W2116729592 hasRelatedWork W3149970699 @default.
- W2116729592 hasRelatedWork W3175484171 @default.
- W2116729592 hasRelatedWork W4366503778 @default.
- W2116729592 hasRelatedWork W830459867 @default.
- W2116729592 isParatext "false" @default.
- W2116729592 isRetracted "false" @default.
- W2116729592 magId "2116729592" @default.
- W2116729592 workType "article" @default.