Matches in SemOpenAlex for { <https://semopenalex.org/work/W2116730651> ?p ?o ?g. }
- W2116730651 endingPage "3108" @default.
- W2116730651 startingPage "3097" @default.
- W2116730651 abstract "High-gain observers have been extensively applied to construct output-feedback adaptive neural control (ANC) for a class of feedback linearizable uncertain nonlinear systems under a nonlinear separation principle. Yet due to static-gain and linear properties, high-gain observers are usually subject to peaking responses and noise sensitivity. Existing adaptive neural network (NN) observers cannot effectively relax the limitations of high-gain observers. This paper presents an output-feedback indirect ANC strategy under a nonseparation principle, where a hybrid estimation scheme that integrates an adaptive NN observer with state variable filters is proposed to estimate plant states. By applying a single Lyapunov function candidate to the entire system, it is proved that the closed-loop system achieves practical asymptotic stability under a relatively low observer gain dominated by controller parameters. Our approach can completely avoid peaking responses without control saturation while keeping favourable noise rejection ability. Simulation results have shown effectiveness and superiority of this approach." @default.
- W2116730651 created "2016-06-24" @default.
- W2116730651 creator A5009201642 @default.
- W2116730651 creator A5015092734 @default.
- W2116730651 creator A5040953644 @default.
- W2116730651 date "2015-12-01" @default.
- W2116730651 modified "2023-09-23" @default.
- W2116730651 title "Peaking-Free Output-Feedback Adaptive Neural Control Under a Nonseparation Principle" @default.
- W2116730651 cites W1559107966 @default.
- W2116730651 cites W1588508919 @default.
- W2116730651 cites W1608662654 @default.
- W2116730651 cites W1709865076 @default.
- W2116730651 cites W1963688148 @default.
- W2116730651 cites W1991188002 @default.
- W2116730651 cites W1991436393 @default.
- W2116730651 cites W1994958900 @default.
- W2116730651 cites W1998656275 @default.
- W2116730651 cites W1999643292 @default.
- W2116730651 cites W2002226942 @default.
- W2116730651 cites W2034949736 @default.
- W2116730651 cites W2044405453 @default.
- W2116730651 cites W2045267663 @default.
- W2116730651 cites W2046614553 @default.
- W2116730651 cites W2047797820 @default.
- W2116730651 cites W2053597359 @default.
- W2116730651 cites W2057491769 @default.
- W2116730651 cites W2057685684 @default.
- W2116730651 cites W2067559621 @default.
- W2116730651 cites W2071443305 @default.
- W2116730651 cites W2074321065 @default.
- W2116730651 cites W2078859333 @default.
- W2116730651 cites W2079548962 @default.
- W2116730651 cites W2082011812 @default.
- W2116730651 cites W2095910574 @default.
- W2116730651 cites W2100210661 @default.
- W2116730651 cites W2108473549 @default.
- W2116730651 cites W2112166125 @default.
- W2116730651 cites W2113382188 @default.
- W2116730651 cites W2117861373 @default.
- W2116730651 cites W2122136962 @default.
- W2116730651 cites W2126993655 @default.
- W2116730651 cites W2143285050 @default.
- W2116730651 cites W2146930087 @default.
- W2116730651 cites W2148852206 @default.
- W2116730651 cites W2153890087 @default.
- W2116730651 cites W2155071086 @default.
- W2116730651 cites W2155597283 @default.
- W2116730651 cites W2155941926 @default.
- W2116730651 cites W2156174311 @default.
- W2116730651 cites W2156759262 @default.
- W2116730651 cites W2325739279 @default.
- W2116730651 cites W3196167895 @default.
- W2116730651 doi "https://doi.org/10.1109/tnnls.2015.2403712" @default.
- W2116730651 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25794400" @default.
- W2116730651 hasPublicationYear "2015" @default.
- W2116730651 type Work @default.
- W2116730651 sameAs 2116730651 @default.
- W2116730651 citedByCount "28" @default.
- W2116730651 countsByYear W21167306512016 @default.
- W2116730651 countsByYear W21167306512017 @default.
- W2116730651 countsByYear W21167306512018 @default.
- W2116730651 countsByYear W21167306512019 @default.
- W2116730651 countsByYear W21167306512020 @default.
- W2116730651 countsByYear W21167306512022 @default.
- W2116730651 crossrefType "journal-article" @default.
- W2116730651 hasAuthorship W2116730651A5009201642 @default.
- W2116730651 hasAuthorship W2116730651A5015092734 @default.
- W2116730651 hasAuthorship W2116730651A5040953644 @default.
- W2116730651 hasConcept C107464732 @default.
- W2116730651 hasConcept C115961682 @default.
- W2116730651 hasConcept C121332964 @default.
- W2116730651 hasConcept C154945302 @default.
- W2116730651 hasConcept C158622935 @default.
- W2116730651 hasConcept C203479927 @default.
- W2116730651 hasConcept C2775924081 @default.
- W2116730651 hasConcept C2780704645 @default.
- W2116730651 hasConcept C3031470 @default.
- W2116730651 hasConcept C33923547 @default.
- W2116730651 hasConcept C41008148 @default.
- W2116730651 hasConcept C47446073 @default.
- W2116730651 hasConcept C50644808 @default.
- W2116730651 hasConcept C60640748 @default.
- W2116730651 hasConcept C62431964 @default.
- W2116730651 hasConcept C62520636 @default.
- W2116730651 hasConcept C6557445 @default.
- W2116730651 hasConcept C86803240 @default.
- W2116730651 hasConcept C99498987 @default.
- W2116730651 hasConceptScore W2116730651C107464732 @default.
- W2116730651 hasConceptScore W2116730651C115961682 @default.
- W2116730651 hasConceptScore W2116730651C121332964 @default.
- W2116730651 hasConceptScore W2116730651C154945302 @default.
- W2116730651 hasConceptScore W2116730651C158622935 @default.
- W2116730651 hasConceptScore W2116730651C203479927 @default.
- W2116730651 hasConceptScore W2116730651C2775924081 @default.
- W2116730651 hasConceptScore W2116730651C2780704645 @default.
- W2116730651 hasConceptScore W2116730651C3031470 @default.
- W2116730651 hasConceptScore W2116730651C33923547 @default.
- W2116730651 hasConceptScore W2116730651C41008148 @default.