Matches in SemOpenAlex for { <https://semopenalex.org/work/W2116733827> ?p ?o ?g. }
- W2116733827 endingPage "266" @default.
- W2116733827 startingPage "253" @default.
- W2116733827 abstract "Investment in landscapes to achieve outcomes that have multiple environmental benefits has become a major priority in many countries. This gives rise to opportunities for mathematical programming methods to provide solutions on where investments could be made on the landscape, to maximise multiple environmental benefits. The problem was formulated as a multi-objective integer programming model, with objective functions representing biodiversity, water run-off and carbon sequestration. We applied a multi-objective Greedy Randomised Adaptive Search Procedure (GRASP) as an evolutionary programming method to find solutions along the Pareto front. This allows the decision maker to explore trade-off's between the objectives. A 142,000 ha case study catchment in eastern Australia was used to test the methodology and assess the sensitivity of the different and often competing environmental benefits." @default.
- W2116733827 created "2016-06-24" @default.
- W2116733827 creator A5009438920 @default.
- W2116733827 creator A5030728431 @default.
- W2116733827 creator A5087775201 @default.
- W2116733827 date "2008-01-01" @default.
- W2116733827 modified "2023-10-14" @default.
- W2116733827 title "A multi-objective model for environmental investment decision making" @default.
- W2116733827 cites W1502969565 @default.
- W2116733827 cites W1513467919 @default.
- W2116733827 cites W1565234356 @default.
- W2116733827 cites W1586765540 @default.
- W2116733827 cites W1972104708 @default.
- W2116733827 cites W1977525540 @default.
- W2116733827 cites W1981863210 @default.
- W2116733827 cites W1982488065 @default.
- W2116733827 cites W1984078293 @default.
- W2116733827 cites W1985013519 @default.
- W2116733827 cites W1986961033 @default.
- W2116733827 cites W1989163816 @default.
- W2116733827 cites W2004331489 @default.
- W2116733827 cites W2015986526 @default.
- W2116733827 cites W2017716706 @default.
- W2116733827 cites W2024110228 @default.
- W2116733827 cites W2032147830 @default.
- W2116733827 cites W2037140854 @default.
- W2116733827 cites W2039195892 @default.
- W2116733827 cites W2053321548 @default.
- W2116733827 cites W2067430982 @default.
- W2116733827 cites W2074395147 @default.
- W2116733827 cites W2081725015 @default.
- W2116733827 cites W2085637840 @default.
- W2116733827 cites W2094099762 @default.
- W2116733827 cites W2106334424 @default.
- W2116733827 cites W2107877434 @default.
- W2116733827 cites W2116661285 @default.
- W2116733827 cites W2117942072 @default.
- W2116733827 cites W2154166248 @default.
- W2116733827 cites W2156457333 @default.
- W2116733827 cites W2166250131 @default.
- W2116733827 cites W2170830164 @default.
- W2116733827 cites W2997776631 @default.
- W2116733827 cites W4243489014 @default.
- W2116733827 cites W4379371402 @default.
- W2116733827 doi "https://doi.org/10.1016/j.cor.2006.02.027" @default.
- W2116733827 hasPublicationYear "2008" @default.
- W2116733827 type Work @default.
- W2116733827 sameAs 2116733827 @default.
- W2116733827 citedByCount "69" @default.
- W2116733827 countsByYear W21167338272012 @default.
- W2116733827 countsByYear W21167338272013 @default.
- W2116733827 countsByYear W21167338272014 @default.
- W2116733827 countsByYear W21167338272015 @default.
- W2116733827 countsByYear W21167338272016 @default.
- W2116733827 countsByYear W21167338272017 @default.
- W2116733827 countsByYear W21167338272018 @default.
- W2116733827 countsByYear W21167338272020 @default.
- W2116733827 countsByYear W21167338272021 @default.
- W2116733827 countsByYear W21167338272022 @default.
- W2116733827 countsByYear W21167338272023 @default.
- W2116733827 crossrefType "journal-article" @default.
- W2116733827 hasAuthorship W2116733827A5009438920 @default.
- W2116733827 hasAuthorship W2116733827A5030728431 @default.
- W2116733827 hasAuthorship W2116733827A5087775201 @default.
- W2116733827 hasConcept C107826830 @default.
- W2116733827 hasConcept C11413529 @default.
- W2116733827 hasConcept C119857082 @default.
- W2116733827 hasConcept C126255220 @default.
- W2116733827 hasConcept C134560507 @default.
- W2116733827 hasConcept C137635306 @default.
- W2116733827 hasConcept C162324750 @default.
- W2116733827 hasConcept C171268870 @default.
- W2116733827 hasConcept C17744445 @default.
- W2116733827 hasConcept C199360897 @default.
- W2116733827 hasConcept C199539241 @default.
- W2116733827 hasConcept C27548731 @default.
- W2116733827 hasConcept C33923547 @default.
- W2116733827 hasConcept C41008148 @default.
- W2116733827 hasConcept C41045048 @default.
- W2116733827 hasConcept C42475967 @default.
- W2116733827 hasConcept C56086750 @default.
- W2116733827 hasConcept C68781425 @default.
- W2116733827 hasConcept C94625758 @default.
- W2116733827 hasConceptScore W2116733827C107826830 @default.
- W2116733827 hasConceptScore W2116733827C11413529 @default.
- W2116733827 hasConceptScore W2116733827C119857082 @default.
- W2116733827 hasConceptScore W2116733827C126255220 @default.
- W2116733827 hasConceptScore W2116733827C134560507 @default.
- W2116733827 hasConceptScore W2116733827C137635306 @default.
- W2116733827 hasConceptScore W2116733827C162324750 @default.
- W2116733827 hasConceptScore W2116733827C171268870 @default.
- W2116733827 hasConceptScore W2116733827C17744445 @default.
- W2116733827 hasConceptScore W2116733827C199360897 @default.
- W2116733827 hasConceptScore W2116733827C199539241 @default.
- W2116733827 hasConceptScore W2116733827C27548731 @default.
- W2116733827 hasConceptScore W2116733827C33923547 @default.
- W2116733827 hasConceptScore W2116733827C41008148 @default.
- W2116733827 hasConceptScore W2116733827C41045048 @default.