Matches in SemOpenAlex for { <https://semopenalex.org/work/W2116742884> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2116742884 abstract "Bag-of-words (BoW) methods are a popular class of object recognition methods that use image features (e.g., SIFT) to form visual dictionaries and subsequent histogram vectors to represent object images in the recognition process. The accuracy of the BoW classifiers, however, is often limited by the presence of uninformative features extracted from the background or irrelevant image segments. Most existing solutions to prune out uninformative features rely on enforcing pairwise epipolar geometry via an expensive structure-from-motion (SfM) procedure. Such solutions are known to break down easily when the camera transformation is large or when the features are extracted from low-resolution, low-quality images. In this paper, we propose a novel method to select informative object features using a more efficient algorithm called Sparse PCA. First, we show that using a large-scale multiple-view object database, informative features can be reliably identified from a highdimensional visual dictionary by applying Sparse PCA on the histograms of each object category. Our experiment shows that the new algorithm improves recognition accuracy compared to the traditional BoW methods and SfM methods. Second, we present a new solution to Sparse PCA as a semidefinite programming problem using the Augmented Lagrangian Method. The new solver outperforms the state of the art for estimating sparse principal vectors as a basis for a low-dimensional subspace model." @default.
- W2116742884 created "2016-06-24" @default.
- W2116742884 creator A5001290854 @default.
- W2116742884 creator A5036442507 @default.
- W2116742884 creator A5062722286 @default.
- W2116742884 date "2011-11-01" @default.
- W2116742884 modified "2023-09-24" @default.
- W2116742884 title "Informative feature selection for object recognition via Sparse PCA" @default.
- W2116742884 cites W1975900269 @default.
- W2116742884 cites W1976591483 @default.
- W2116742884 cites W1985769718 @default.
- W2116742884 cites W1986482242 @default.
- W2116742884 cites W1998888609 @default.
- W2116742884 cites W2063564733 @default.
- W2116742884 cites W2091352038 @default.
- W2116742884 cites W2096361585 @default.
- W2116742884 cites W2106521131 @default.
- W2116742884 cites W2112020727 @default.
- W2116742884 cites W2113600901 @default.
- W2116742884 cites W2118040592 @default.
- W2116742884 cites W2119605622 @default.
- W2116742884 cites W2124386111 @default.
- W2116742884 cites W2128017662 @default.
- W2116742884 cites W2129201358 @default.
- W2116742884 cites W2131225894 @default.
- W2116742884 cites W2131846894 @default.
- W2116742884 cites W2162915993 @default.
- W2116742884 cites W2615253071 @default.
- W2116742884 doi "https://doi.org/10.1109/iccv.2011.6126321" @default.
- W2116742884 hasPublicationYear "2011" @default.
- W2116742884 type Work @default.
- W2116742884 sameAs 2116742884 @default.
- W2116742884 citedByCount "50" @default.
- W2116742884 countsByYear W21167428842012 @default.
- W2116742884 countsByYear W21167428842013 @default.
- W2116742884 countsByYear W21167428842014 @default.
- W2116742884 countsByYear W21167428842015 @default.
- W2116742884 countsByYear W21167428842016 @default.
- W2116742884 countsByYear W21167428842017 @default.
- W2116742884 countsByYear W21167428842018 @default.
- W2116742884 countsByYear W21167428842019 @default.
- W2116742884 countsByYear W21167428842020 @default.
- W2116742884 countsByYear W21167428842021 @default.
- W2116742884 crossrefType "proceedings-article" @default.
- W2116742884 hasAuthorship W2116742884A5001290854 @default.
- W2116742884 hasAuthorship W2116742884A5036442507 @default.
- W2116742884 hasAuthorship W2116742884A5062722286 @default.
- W2116742884 hasBestOaLocation W21167428842 @default.
- W2116742884 hasConcept C115961682 @default.
- W2116742884 hasConcept C124066611 @default.
- W2116742884 hasConcept C153180895 @default.
- W2116742884 hasConcept C154945302 @default.
- W2116742884 hasConcept C184898388 @default.
- W2116742884 hasConcept C31972630 @default.
- W2116742884 hasConcept C32834561 @default.
- W2116742884 hasConcept C41008148 @default.
- W2116742884 hasConcept C52622490 @default.
- W2116742884 hasConcept C53533937 @default.
- W2116742884 hasConcept C61265191 @default.
- W2116742884 hasConcept C64876066 @default.
- W2116742884 hasConceptScore W2116742884C115961682 @default.
- W2116742884 hasConceptScore W2116742884C124066611 @default.
- W2116742884 hasConceptScore W2116742884C153180895 @default.
- W2116742884 hasConceptScore W2116742884C154945302 @default.
- W2116742884 hasConceptScore W2116742884C184898388 @default.
- W2116742884 hasConceptScore W2116742884C31972630 @default.
- W2116742884 hasConceptScore W2116742884C32834561 @default.
- W2116742884 hasConceptScore W2116742884C41008148 @default.
- W2116742884 hasConceptScore W2116742884C52622490 @default.
- W2116742884 hasConceptScore W2116742884C53533937 @default.
- W2116742884 hasConceptScore W2116742884C61265191 @default.
- W2116742884 hasConceptScore W2116742884C64876066 @default.
- W2116742884 hasLocation W21167428841 @default.
- W2116742884 hasLocation W21167428842 @default.
- W2116742884 hasOpenAccess W2116742884 @default.
- W2116742884 hasPrimaryLocation W21167428841 @default.
- W2116742884 hasRelatedWork W2076289882 @default.
- W2116742884 hasRelatedWork W2085298065 @default.
- W2116742884 hasRelatedWork W2124566234 @default.
- W2116742884 hasRelatedWork W2183536701 @default.
- W2116742884 hasRelatedWork W2392126055 @default.
- W2116742884 hasRelatedWork W2950886455 @default.
- W2116742884 hasRelatedWork W3186305498 @default.
- W2116742884 hasRelatedWork W3212974055 @default.
- W2116742884 hasRelatedWork W1964373293 @default.
- W2116742884 hasRelatedWork W2184171902 @default.
- W2116742884 isParatext "false" @default.
- W2116742884 isRetracted "false" @default.
- W2116742884 magId "2116742884" @default.
- W2116742884 workType "article" @default.