Matches in SemOpenAlex for { <https://semopenalex.org/work/W2116746932> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2116746932 endingPage "524" @default.
- W2116746932 startingPage "501" @default.
- W2116746932 abstract "We consider the p -Laplacian boundary value problem (1) − ( ϕ p ( u ′ ( x ) ) ) ′ = f ( x , u ( x ) , u ′ ( x ) ) , a.e. x ∈ ( 0 , 1 ) , (2) c 00 u ( 0 ) = c 01 u ′ ( 0 ) , c 10 u ( 1 ) = c 11 u ′ ( 1 ) , where p > 1 is a fixed number, ϕ p ( s ) = | s | p − 2 s , s ∈ R , and for each j = 0 , 1 , | c j 0 | + | c j 1 | > 0 . The function f : [ 0 , 1 ] × R 2 → R is a Carathéodory function satisfying, for ( x , s , t ) ∈ [ 0 , 1 ] × R 2 , ψ ± ( x ) ϕ p ( s ) − E ( x , s , t ) ⩽ f ( x , s , t ) ⩽ Ψ ± ( x ) ϕ p ( s ) + E ( x , s , t ) , ± s ⩾ 0 , where ψ ± , Ψ ± ∈ L 1 ( 0 , 1 ) , and E has the form E ( x , s , t ) = ζ ( x ) e ( | s | + | t | ) , with ζ ∈ L 1 ( 0 , 1 ) , ζ ⩾ 0 , e ⩾ 0 and lim r → ∞ e ( r ) r 1 − p = 0 . This condition allows the nonlinearity in (1) to behave differently as u → ± ∞ . Such a nonlinearity is often termed jumping . Related to (1) , (2) is the problem (3) − ( ϕ p ( u ′ ) ′ ) = a ϕ p ( u + ) − b ϕ p ( u − ) + λ ϕ p ( u ) , in ( 0 , 1 ) , together with (2) , where a , b ∈ L 1 ( 0 , 1 ) , λ ∈ R , and u ± ( x ) = max { ± u ( x ) , 0 } for x ∈ [ 0 , 1 ] . This problem is ‘positively-homogeneous’ and jumping. Values of λ for which (2) , (3) has a nontrivial solution u will be called half-eigenvalues , while the corresponding solutions u will be called half-eigenfunctions . We show that a sequence of half-eigenvalues exists, the corresponding half-eigenfunctions having certain nodal properties, and we obtain certain spectral and degree theoretic properties of the set of half-eigenvalues. These properties lead to existence and nonexistence results for the problem (1) , (2) . We also consider a related bifurcation problem, and obtain a global bifurcation result similar to the well-known Rabinowitz global bifurcation theorem. This then leads to a multiplicity result for (1) , (2) . When the functions a and b are constant the set of half-eigenvalues is closely related to the ‘Fučík spectrum’ of the problem, and equivalent solvability results are obtained using the two approaches. However, when a and b are not constant the half-eigenvalue approach yields stronger results." @default.
- W2116746932 created "2016-06-24" @default.
- W2116746932 creator A5067895351 @default.
- W2116746932 date "2006-07-01" @default.
- W2116746932 modified "2023-09-25" @default.
- W2116746932 title "p-Laplacian problems with jumping nonlinearities" @default.
- W2116746932 cites W1506032630 @default.
- W2116746932 cites W1555674425 @default.
- W2116746932 cites W1967751790 @default.
- W2116746932 cites W1968912168 @default.
- W2116746932 cites W1980038574 @default.
- W2116746932 cites W1986403445 @default.
- W2116746932 cites W1994009601 @default.
- W2116746932 cites W1998442340 @default.
- W2116746932 cites W2017014157 @default.
- W2116746932 cites W2025029590 @default.
- W2116746932 cites W2029502025 @default.
- W2116746932 cites W2031966082 @default.
- W2116746932 cites W2036092359 @default.
- W2116746932 cites W2039908209 @default.
- W2116746932 cites W2056012080 @default.
- W2116746932 cites W2057329902 @default.
- W2116746932 cites W2067265108 @default.
- W2116746932 cites W2068617355 @default.
- W2116746932 cites W2071329009 @default.
- W2116746932 cites W2076797056 @default.
- W2116746932 cites W2089715835 @default.
- W2116746932 cites W2093957401 @default.
- W2116746932 cites W2107332990 @default.
- W2116746932 cites W2145181955 @default.
- W2116746932 cites W2593469739 @default.
- W2116746932 cites W3021722416 @default.
- W2116746932 cites W656492104 @default.
- W2116746932 doi "https://doi.org/10.1016/j.jde.2005.08.016" @default.
- W2116746932 hasPublicationYear "2006" @default.
- W2116746932 type Work @default.
- W2116746932 sameAs 2116746932 @default.
- W2116746932 citedByCount "19" @default.
- W2116746932 countsByYear W21167469322012 @default.
- W2116746932 countsByYear W21167469322013 @default.
- W2116746932 countsByYear W21167469322015 @default.
- W2116746932 countsByYear W21167469322016 @default.
- W2116746932 countsByYear W21167469322017 @default.
- W2116746932 countsByYear W21167469322019 @default.
- W2116746932 countsByYear W21167469322022 @default.
- W2116746932 crossrefType "journal-article" @default.
- W2116746932 hasAuthorship W2116746932A5067895351 @default.
- W2116746932 hasConcept C114614502 @default.
- W2116746932 hasConcept C121332964 @default.
- W2116746932 hasConcept C128803854 @default.
- W2116746932 hasConcept C134306372 @default.
- W2116746932 hasConcept C14036430 @default.
- W2116746932 hasConcept C158693339 @default.
- W2116746932 hasConcept C165700671 @default.
- W2116746932 hasConcept C182310444 @default.
- W2116746932 hasConcept C203269682 @default.
- W2116746932 hasConcept C2779897013 @default.
- W2116746932 hasConcept C33923547 @default.
- W2116746932 hasConcept C42407357 @default.
- W2116746932 hasConcept C62520636 @default.
- W2116746932 hasConcept C66882249 @default.
- W2116746932 hasConcept C78458016 @default.
- W2116746932 hasConcept C86803240 @default.
- W2116746932 hasConceptScore W2116746932C114614502 @default.
- W2116746932 hasConceptScore W2116746932C121332964 @default.
- W2116746932 hasConceptScore W2116746932C128803854 @default.
- W2116746932 hasConceptScore W2116746932C134306372 @default.
- W2116746932 hasConceptScore W2116746932C14036430 @default.
- W2116746932 hasConceptScore W2116746932C158693339 @default.
- W2116746932 hasConceptScore W2116746932C165700671 @default.
- W2116746932 hasConceptScore W2116746932C182310444 @default.
- W2116746932 hasConceptScore W2116746932C203269682 @default.
- W2116746932 hasConceptScore W2116746932C2779897013 @default.
- W2116746932 hasConceptScore W2116746932C33923547 @default.
- W2116746932 hasConceptScore W2116746932C42407357 @default.
- W2116746932 hasConceptScore W2116746932C62520636 @default.
- W2116746932 hasConceptScore W2116746932C66882249 @default.
- W2116746932 hasConceptScore W2116746932C78458016 @default.
- W2116746932 hasConceptScore W2116746932C86803240 @default.
- W2116746932 hasIssue "2" @default.
- W2116746932 hasLocation W21167469321 @default.
- W2116746932 hasOpenAccess W2116746932 @default.
- W2116746932 hasPrimaryLocation W21167469321 @default.
- W2116746932 hasRelatedWork W1122079920 @default.
- W2116746932 hasRelatedWork W1513846220 @default.
- W2116746932 hasRelatedWork W2044106429 @default.
- W2116746932 hasRelatedWork W2334357536 @default.
- W2116746932 hasRelatedWork W2345384855 @default.
- W2116746932 hasRelatedWork W2405825400 @default.
- W2116746932 hasRelatedWork W2908401205 @default.
- W2116746932 hasRelatedWork W3214805258 @default.
- W2116746932 hasRelatedWork W4226310554 @default.
- W2116746932 hasRelatedWork W4302419125 @default.
- W2116746932 hasVolume "226" @default.
- W2116746932 isParatext "false" @default.
- W2116746932 isRetracted "false" @default.
- W2116746932 magId "2116746932" @default.
- W2116746932 workType "article" @default.