Matches in SemOpenAlex for { <https://semopenalex.org/work/W2116767824> ?p ?o ?g. }
- W2116767824 endingPage "1131" @default.
- W2116767824 startingPage "1123" @default.
- W2116767824 abstract "Dimensionality reduction (DR) is the key issue to improve the classifiers' efficiency for hyperspectral images (HSIs). In this paper, principal component analysis (PCA), independent component analysis, and projection pursuit (PP) approaches to DR have been investigated. These matrix-algebra methods are applied on vectorized images. Thereof, the spatial rearrangement is lost. To jointly take advantage of the spatial and spectral information, HSI has been recently represented as tensor. Offering multiple ways to decompose data orthogonally, we introduced DR methods based on multilinear-algebra tools. The DR is performed on spectral way using PCA, or PP, joint to an orthogonal projection onto a lower subspace dimension of the spatial ways. We show the classification improvement using the introduced methods in function to existing methods. This experiment is exemplified using real-world HYDICE data." @default.
- W2116767824 created "2016-06-24" @default.
- W2116767824 creator A5052863335 @default.
- W2116767824 creator A5073235582 @default.
- W2116767824 date "2009-04-01" @default.
- W2116767824 modified "2023-10-13" @default.
- W2116767824 title "Dimensionality Reduction Based on Tensor Modeling for Classification Methods" @default.
- W2116767824 cites W1963826206 @default.
- W2116767824 cites W1978376511 @default.
- W2116767824 cites W2001413936 @default.
- W2116767824 cites W2013912476 @default.
- W2116767824 cites W2018282388 @default.
- W2116767824 cites W2036226226 @default.
- W2116767824 cites W2069231830 @default.
- W2116767824 cites W2082612735 @default.
- W2116767824 cites W2097900616 @default.
- W2116767824 cites W2099741732 @default.
- W2116767824 cites W2100779717 @default.
- W2116767824 cites W2109395398 @default.
- W2116767824 cites W2118634086 @default.
- W2116767824 cites W2124547294 @default.
- W2116767824 cites W2126045092 @default.
- W2116767824 cites W2136023375 @default.
- W2116767824 cites W2153295338 @default.
- W2116767824 cites W2161037015 @default.
- W2116767824 cites W2163318306 @default.
- W2116767824 cites W2171520281 @default.
- W2116767824 cites W2795528501 @default.
- W2116767824 cites W4205778870 @default.
- W2116767824 doi "https://doi.org/10.1109/tgrs.2008.2008903" @default.
- W2116767824 hasPublicationYear "2009" @default.
- W2116767824 type Work @default.
- W2116767824 sameAs 2116767824 @default.
- W2116767824 citedByCount "91" @default.
- W2116767824 countsByYear W21167678242012 @default.
- W2116767824 countsByYear W21167678242013 @default.
- W2116767824 countsByYear W21167678242014 @default.
- W2116767824 countsByYear W21167678242015 @default.
- W2116767824 countsByYear W21167678242016 @default.
- W2116767824 countsByYear W21167678242017 @default.
- W2116767824 countsByYear W21167678242018 @default.
- W2116767824 countsByYear W21167678242019 @default.
- W2116767824 countsByYear W21167678242020 @default.
- W2116767824 countsByYear W21167678242021 @default.
- W2116767824 countsByYear W21167678242022 @default.
- W2116767824 countsByYear W21167678242023 @default.
- W2116767824 crossrefType "journal-article" @default.
- W2116767824 hasAuthorship W2116767824A5052863335 @default.
- W2116767824 hasAuthorship W2116767824A5073235582 @default.
- W2116767824 hasConcept C111030470 @default.
- W2116767824 hasConcept C11413529 @default.
- W2116767824 hasConcept C118038509 @default.
- W2116767824 hasConcept C121332964 @default.
- W2116767824 hasConcept C136119220 @default.
- W2116767824 hasConcept C138354692 @default.
- W2116767824 hasConcept C153180895 @default.
- W2116767824 hasConcept C154945302 @default.
- W2116767824 hasConcept C155281189 @default.
- W2116767824 hasConcept C158693339 @default.
- W2116767824 hasConcept C159078339 @default.
- W2116767824 hasConcept C169171071 @default.
- W2116767824 hasConcept C202444582 @default.
- W2116767824 hasConcept C27438332 @default.
- W2116767824 hasConcept C32834561 @default.
- W2116767824 hasConcept C33676613 @default.
- W2116767824 hasConcept C33923547 @default.
- W2116767824 hasConcept C41008148 @default.
- W2116767824 hasConcept C42355184 @default.
- W2116767824 hasConcept C57493831 @default.
- W2116767824 hasConcept C60321788 @default.
- W2116767824 hasConcept C62520636 @default.
- W2116767824 hasConcept C70518039 @default.
- W2116767824 hasConcept C84392682 @default.
- W2116767824 hasConceptScore W2116767824C111030470 @default.
- W2116767824 hasConceptScore W2116767824C11413529 @default.
- W2116767824 hasConceptScore W2116767824C118038509 @default.
- W2116767824 hasConceptScore W2116767824C121332964 @default.
- W2116767824 hasConceptScore W2116767824C136119220 @default.
- W2116767824 hasConceptScore W2116767824C138354692 @default.
- W2116767824 hasConceptScore W2116767824C153180895 @default.
- W2116767824 hasConceptScore W2116767824C154945302 @default.
- W2116767824 hasConceptScore W2116767824C155281189 @default.
- W2116767824 hasConceptScore W2116767824C158693339 @default.
- W2116767824 hasConceptScore W2116767824C159078339 @default.
- W2116767824 hasConceptScore W2116767824C169171071 @default.
- W2116767824 hasConceptScore W2116767824C202444582 @default.
- W2116767824 hasConceptScore W2116767824C27438332 @default.
- W2116767824 hasConceptScore W2116767824C32834561 @default.
- W2116767824 hasConceptScore W2116767824C33676613 @default.
- W2116767824 hasConceptScore W2116767824C33923547 @default.
- W2116767824 hasConceptScore W2116767824C41008148 @default.
- W2116767824 hasConceptScore W2116767824C42355184 @default.
- W2116767824 hasConceptScore W2116767824C57493831 @default.
- W2116767824 hasConceptScore W2116767824C60321788 @default.
- W2116767824 hasConceptScore W2116767824C62520636 @default.
- W2116767824 hasConceptScore W2116767824C70518039 @default.
- W2116767824 hasConceptScore W2116767824C84392682 @default.
- W2116767824 hasIssue "4" @default.