Matches in SemOpenAlex for { <https://semopenalex.org/work/W2116770586> ?p ?o ?g. }
- W2116770586 abstract "Number of lanes is a basic roadway attribute that is widely used in many transportation applications. Traditionally, number of lanes is collected and updated through field surveys, which is expensive especially for large coverage areas with a high volume of road segments. One alternative is through manual data extraction from high-resolution aerial images. However, this is feasible only for smaller areas. For large areas that may involve tens of thousands of aerial images and millions of road segments, an automatic extraction is a more feasible approach. This dissertation aims to improve the existing process of extracting number of lanes from aerial images automatically by making improvements in three specific areas: (1) performance of lane model, (2) automatic acquisition of external knowledge, and (3) automatic lane location identification and reliability estimation. In this dissertation, a framework was developed to automatically recognize and extract number of lanes from geo-rectified aerial images. In order to address the external knowledge acquisition problem in this framework, a mapping technique was developed to automatically estimate the approximate pixel locations of road segments and the travel direction of the target roads in aerial images. A lane model was developed based on the typical appearance features of travel lanes in color aerial images. It provides more resistance to “noise” such as presence of vehicle occlusions and sidewalks. Multi-class classification test results based on the K-nearest neighbor, logistic regression, and Support Vector Machine (SVM) classification algorithms showed that the new model provides a high level of prediction accuracy. Two optimization algorithms based on fixed and flexible lane widths, respectively, were then developed to extract number of lanes from the lane model output. The flexible lane-width approach was recommended because it solved the problems of error-tolerant pixel mapping and reliability estimation. The approach was tested using a lane model with two SVM classifiers, i.e., the Polynomial kernel and the Radial Basis Function (RBF) kernel. The results showed that the framework yielded good performance in a general test scenario with mixed types of road segments and another test scenario with heavy plant occlusions." @default.
- W2116770586 created "2016-06-24" @default.
- W2116770586 creator A5074466108 @default.
- W2116770586 date "2017-11-13" @default.
- W2116770586 modified "2023-10-16" @default.
- W2116770586 title "Automatic Extraction of Number of Lanes from Aerial Images for Transportation Applications" @default.
- W2116770586 cites W133031845 @default.
- W2116770586 cites W1488650253 @default.
- W2116770586 cites W1554944419 @default.
- W2116770586 cites W1555849598 @default.
- W2116770586 cites W1603572545 @default.
- W2116770586 cites W1607393302 @default.
- W2116770586 cites W1608462934 @default.
- W2116770586 cites W1615222741 @default.
- W2116770586 cites W1680392829 @default.
- W2116770586 cites W1719450242 @default.
- W2116770586 cites W1848463583 @default.
- W2116770586 cites W1944398187 @default.
- W2116770586 cites W1967395374 @default.
- W2116770586 cites W1973503144 @default.
- W2116770586 cites W1973853577 @default.
- W2116770586 cites W1979770060 @default.
- W2116770586 cites W1985258161 @default.
- W2116770586 cites W1992825481 @default.
- W2116770586 cites W2000666616 @default.
- W2116770586 cites W2000961726 @default.
- W2116770586 cites W2010828461 @default.
- W2116770586 cites W2013882327 @default.
- W2116770586 cites W2016458917 @default.
- W2116770586 cites W2018839022 @default.
- W2116770586 cites W2019553201 @default.
- W2116770586 cites W2023151535 @default.
- W2116770586 cites W2024918151 @default.
- W2116770586 cites W2044465660 @default.
- W2116770586 cites W2046761380 @default.
- W2116770586 cites W2048605480 @default.
- W2116770586 cites W2052932511 @default.
- W2116770586 cites W2062493000 @default.
- W2116770586 cites W2063623478 @default.
- W2116770586 cites W2069842045 @default.
- W2116770586 cites W2072783535 @default.
- W2116770586 cites W2078558728 @default.
- W2116770586 cites W2080779451 @default.
- W2116770586 cites W2093832627 @default.
- W2116770586 cites W2094420085 @default.
- W2116770586 cites W2095135151 @default.
- W2116770586 cites W2095667273 @default.
- W2116770586 cites W2100088432 @default.
- W2116770586 cites W2111814036 @default.
- W2116770586 cites W2111975408 @default.
- W2116770586 cites W2115763357 @default.
- W2116770586 cites W2125314768 @default.
- W2116770586 cites W2126653672 @default.
- W2116770586 cites W2132416843 @default.
- W2116770586 cites W2136949584 @default.
- W2116770586 cites W2139212933 @default.
- W2116770586 cites W2142427031 @default.
- W2116770586 cites W2145023731 @default.
- W2116770586 cites W2148603752 @default.
- W2116770586 cites W2151777012 @default.
- W2116770586 cites W2155511848 @default.
- W2116770586 cites W2155910279 @default.
- W2116770586 cites W2156155065 @default.
- W2116770586 cites W2156909104 @default.
- W2116770586 cites W2159540332 @default.
- W2116770586 cites W2160477239 @default.
- W2116770586 cites W2163200524 @default.
- W2116770586 cites W2167304555 @default.
- W2116770586 cites W2167787089 @default.
- W2116770586 cites W2170672803 @default.
- W2116770586 cites W2170912380 @default.
- W2116770586 cites W2171330332 @default.
- W2116770586 cites W2171548319 @default.
- W2116770586 cites W2212111280 @default.
- W2116770586 cites W2903950532 @default.
- W2116770586 cites W2911709767 @default.
- W2116770586 cites W2989983865 @default.
- W2116770586 cites W3023786531 @default.
- W2116770586 cites W313004809 @default.
- W2116770586 cites W627727819 @default.
- W2116770586 cites W740415 @default.
- W2116770586 cites W792789217 @default.
- W2116770586 cites W2189094910 @default.
- W2116770586 cites W2585030105 @default.
- W2116770586 doi "https://doi.org/10.25148/etd.fidc000099" @default.
- W2116770586 hasPublicationYear "2017" @default.
- W2116770586 type Work @default.
- W2116770586 sameAs 2116770586 @default.
- W2116770586 citedByCount "0" @default.
- W2116770586 crossrefType "dissertation" @default.
- W2116770586 hasAuthorship W2116770586A5074466108 @default.
- W2116770586 hasBestOaLocation W21167705861 @default.
- W2116770586 hasConcept C111919701 @default.
- W2116770586 hasConcept C115961682 @default.
- W2116770586 hasConcept C116834253 @default.
- W2116770586 hasConcept C12267149 @default.
- W2116770586 hasConcept C124101348 @default.
- W2116770586 hasConcept C153180895 @default.
- W2116770586 hasConcept C154945302 @default.
- W2116770586 hasConcept C2776429412 @default.