Matches in SemOpenAlex for { <https://semopenalex.org/work/W2116793806> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2116793806 endingPage "597" @default.
- W2116793806 startingPage "584" @default.
- W2116793806 abstract "Hyperspectral sensors collect hundreds of narrow and contiguously spaced spectral bands of data. Such sensors provide fully registered high resolution spatial and spectral images that are invaluable in discriminating between man-made objects and natural clutter backgrounds. The price paid for this high resolution data is extremely large data sets, several hundred of Mbytes for a single scene, that make storage and transmission difficult, thus requiring fast onboard processing techniques to reduce the data being transmitted. Attempts to apply traditional maximum likelihood detection techniques for in-flight processing of these massive amounts of hyperspectral data suffer from two limitations: first, they neglect the spatial correlation of the clutter by treating it as spatially white noise; second, their computational cost renders them prohibitive without significant data reduction like by grouping the spectral bands into clusters, with a consequent loss of spectral resolution. This paper presents a maximum likelihood detector that successfully confronts both problems: rather than ignoring the spatial and spectral correlations, our detector exploits them to its advantage; and it is computationally expedient, its complexity increasing only linearly with the number of spectral bands available. Our approach is based on a Gauss-Markov random field (GMRF) modeling of the clutter, which has the advantage of providing a direct parameterization of the inverse of the clutter covariance, the quantity of interest in the test statistic. We discuss in detail two alternative GMRF detectors: one based on a binary hypothesis approach, and the other on a single hypothesis formulation. We analyze extensively with real hyperspectral imagery data (HYDICE and SEBASS) the performance of the detectors, comparing them to a benchmark detector, the RX-algorithm. Our results show that the GMRF single hypothesis detector outperforms significantly in computational cost the RX-algorithm, while delivering noticeable detection performance improvement." @default.
- W2116793806 created "2016-06-24" @default.
- W2116793806 creator A5011516888 @default.
- W2116793806 creator A5045861415 @default.
- W2116793806 date "2001-04-01" @default.
- W2116793806 modified "2023-09-28" @default.
- W2116793806 title "Efficient detection in hyperspectral imagery" @default.
- W2116793806 cites W1537977601 @default.
- W2116793806 cites W1971180200 @default.
- W2116793806 cites W1979867120 @default.
- W2116793806 cites W2037942041 @default.
- W2116793806 cites W2047870694 @default.
- W2116793806 cites W2053480972 @default.
- W2116793806 cites W2077070152 @default.
- W2116793806 cites W2110034185 @default.
- W2116793806 cites W2146820417 @default.
- W2116793806 cites W2150224589 @default.
- W2116793806 cites W2150347412 @default.
- W2116793806 cites W2153238902 @default.
- W2116793806 cites W2163436471 @default.
- W2116793806 cites W2167320870 @default.
- W2116793806 cites W4244434047 @default.
- W2116793806 cites W2078025302 @default.
- W2116793806 doi "https://doi.org/10.1109/83.913593" @default.
- W2116793806 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/18249648" @default.
- W2116793806 hasPublicationYear "2001" @default.
- W2116793806 type Work @default.
- W2116793806 sameAs 2116793806 @default.
- W2116793806 citedByCount "127" @default.
- W2116793806 countsByYear W21167938062012 @default.
- W2116793806 countsByYear W21167938062013 @default.
- W2116793806 countsByYear W21167938062014 @default.
- W2116793806 countsByYear W21167938062015 @default.
- W2116793806 countsByYear W21167938062016 @default.
- W2116793806 countsByYear W21167938062017 @default.
- W2116793806 countsByYear W21167938062018 @default.
- W2116793806 countsByYear W21167938062019 @default.
- W2116793806 countsByYear W21167938062020 @default.
- W2116793806 countsByYear W21167938062021 @default.
- W2116793806 countsByYear W21167938062022 @default.
- W2116793806 countsByYear W21167938062023 @default.
- W2116793806 crossrefType "journal-article" @default.
- W2116793806 hasAuthorship W2116793806A5011516888 @default.
- W2116793806 hasAuthorship W2116793806A5045861415 @default.
- W2116793806 hasBestOaLocation W21167938062 @default.
- W2116793806 hasConcept C11413529 @default.
- W2116793806 hasConcept C115961682 @default.
- W2116793806 hasConcept C124504099 @default.
- W2116793806 hasConcept C127313418 @default.
- W2116793806 hasConcept C132094186 @default.
- W2116793806 hasConcept C153180895 @default.
- W2116793806 hasConcept C154945302 @default.
- W2116793806 hasConcept C159078339 @default.
- W2116793806 hasConcept C205372480 @default.
- W2116793806 hasConcept C2778045648 @default.
- W2116793806 hasConcept C41008148 @default.
- W2116793806 hasConcept C554190296 @default.
- W2116793806 hasConcept C62649853 @default.
- W2116793806 hasConcept C76155785 @default.
- W2116793806 hasConcept C78660771 @default.
- W2116793806 hasConcept C94915269 @default.
- W2116793806 hasConceptScore W2116793806C11413529 @default.
- W2116793806 hasConceptScore W2116793806C115961682 @default.
- W2116793806 hasConceptScore W2116793806C124504099 @default.
- W2116793806 hasConceptScore W2116793806C127313418 @default.
- W2116793806 hasConceptScore W2116793806C132094186 @default.
- W2116793806 hasConceptScore W2116793806C153180895 @default.
- W2116793806 hasConceptScore W2116793806C154945302 @default.
- W2116793806 hasConceptScore W2116793806C159078339 @default.
- W2116793806 hasConceptScore W2116793806C205372480 @default.
- W2116793806 hasConceptScore W2116793806C2778045648 @default.
- W2116793806 hasConceptScore W2116793806C41008148 @default.
- W2116793806 hasConceptScore W2116793806C554190296 @default.
- W2116793806 hasConceptScore W2116793806C62649853 @default.
- W2116793806 hasConceptScore W2116793806C76155785 @default.
- W2116793806 hasConceptScore W2116793806C78660771 @default.
- W2116793806 hasConceptScore W2116793806C94915269 @default.
- W2116793806 hasIssue "4" @default.
- W2116793806 hasLocation W21167938061 @default.
- W2116793806 hasLocation W21167938062 @default.
- W2116793806 hasLocation W21167938063 @default.
- W2116793806 hasOpenAccess W2116793806 @default.
- W2116793806 hasPrimaryLocation W21167938061 @default.
- W2116793806 hasRelatedWork W1609585639 @default.
- W2116793806 hasRelatedWork W2004982469 @default.
- W2116793806 hasRelatedWork W2014518624 @default.
- W2116793806 hasRelatedWork W2116793806 @default.
- W2116793806 hasRelatedWork W2168549731 @default.
- W2116793806 hasRelatedWork W2540644541 @default.
- W2116793806 hasRelatedWork W2579567122 @default.
- W2116793806 hasRelatedWork W2765230616 @default.
- W2116793806 hasRelatedWork W2939043489 @default.
- W2116793806 hasRelatedWork W2969963153 @default.
- W2116793806 hasVolume "10" @default.
- W2116793806 isParatext "false" @default.
- W2116793806 isRetracted "false" @default.
- W2116793806 magId "2116793806" @default.
- W2116793806 workType "article" @default.