Matches in SemOpenAlex for { <https://semopenalex.org/work/W2116795291> ?p ?o ?g. }
- W2116795291 endingPage "149" @default.
- W2116795291 startingPage "139" @default.
- W2116795291 abstract "1. Traditional estimation of age-specific survival and mortality rates in vertebrates is limited to individuals with known age. Although this subject has been studied extensively using effective capture–recapture and capture–recovery models, inference remains challenging because of large numbers of incomplete records (i.e. unknown age of many individuals) and because of the inadequate duration of the studies. 2. Here, we present a hierarchical model for capture–recapture/recovery (CRR) data sets with large proportions of unknown times of birth and death. The model uses a Bayesian framework to draw inference on population-level age-specific demographic rates using parametric survival functions and applies this information to reconstruct times of birth and death for individuals with unknown age. 3. We simulated a set of CRR data sets with varying study span and proportions of individuals with known age, and varying recapture and recovery probabilities. We used these data sets to compare our method to a traditional CRR model, which requires knowledge of individual ages. Subsequently, we applied our method to a subset of a long-term CRR data set on Soay sheep. 4. Our results show that this method performs better than the common CRR model when sample sizes are low. Still, our model is sensitive to the choice of priors with low recapture probability and short studies. In such cases, priors that overestimate survival perform better than those that underestimate it. Also, the model was able to estimate accurately ages at death for Soay sheep, with an average error of 0·94 years and to identify differences in mortality rate between sexes. 5. Although many of the problems in the estimation of age-specific survival can be reduced through more efficient sampling schemes, most ecological data sets are still sparse and with a large proportion of missing records. Thus, improved sampling needs still to be combined with statistical models capable of overcoming the unavoidable limitations of any fieldwork. We show that our approach provides reliable estimates of parameters and unknown times of birth and death even with the most incomplete data sets while being flexible enough to accommodate multiple recapture probabilities and covariates." @default.
- W2116795291 created "2016-06-24" @default.
- W2116795291 creator A5019444846 @default.
- W2116795291 creator A5090220956 @default.
- W2116795291 date "2011-08-26" @default.
- W2116795291 modified "2023-10-15" @default.
- W2116795291 title "Bayesian inference on age-specific survival for censored and truncated data" @default.
- W2116795291 cites W14987644 @default.
- W2116795291 cites W1964104682 @default.
- W2116795291 cites W1968707191 @default.
- W2116795291 cites W1972772228 @default.
- W2116795291 cites W1996773836 @default.
- W2116795291 cites W2004458492 @default.
- W2116795291 cites W2004623573 @default.
- W2116795291 cites W2009810172 @default.
- W2116795291 cites W2015558203 @default.
- W2116795291 cites W2023819228 @default.
- W2116795291 cites W2034024749 @default.
- W2116795291 cites W2036226479 @default.
- W2116795291 cites W2037484017 @default.
- W2116795291 cites W2038848431 @default.
- W2116795291 cites W2044881087 @default.
- W2116795291 cites W2057765075 @default.
- W2116795291 cites W2070632060 @default.
- W2116795291 cites W2071603030 @default.
- W2116795291 cites W2076657070 @default.
- W2116795291 cites W2080396854 @default.
- W2116795291 cites W2082920736 @default.
- W2116795291 cites W2089372913 @default.
- W2116795291 cites W2104544629 @default.
- W2116795291 cites W2117176912 @default.
- W2116795291 cites W2117885154 @default.
- W2116795291 cites W2118628876 @default.
- W2116795291 cites W2122550735 @default.
- W2116795291 cites W2127874106 @default.
- W2116795291 cites W2131698315 @default.
- W2116795291 cites W2132504853 @default.
- W2116795291 cites W2133371793 @default.
- W2116795291 cites W2133807134 @default.
- W2116795291 cites W2146198038 @default.
- W2116795291 cites W2154400587 @default.
- W2116795291 cites W2157728968 @default.
- W2116795291 cites W2157911387 @default.
- W2116795291 cites W2161300703 @default.
- W2116795291 cites W2161991114 @default.
- W2116795291 cites W2179783171 @default.
- W2116795291 cites W2331860132 @default.
- W2116795291 cites W4247477422 @default.
- W2116795291 cites W4302434451 @default.
- W2116795291 doi "https://doi.org/10.1111/j.1365-2656.2011.01898.x" @default.
- W2116795291 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21883202" @default.
- W2116795291 hasPublicationYear "2011" @default.
- W2116795291 type Work @default.
- W2116795291 sameAs 2116795291 @default.
- W2116795291 citedByCount "76" @default.
- W2116795291 countsByYear W21167952912012 @default.
- W2116795291 countsByYear W21167952912013 @default.
- W2116795291 countsByYear W21167952912014 @default.
- W2116795291 countsByYear W21167952912015 @default.
- W2116795291 countsByYear W21167952912016 @default.
- W2116795291 countsByYear W21167952912017 @default.
- W2116795291 countsByYear W21167952912018 @default.
- W2116795291 countsByYear W21167952912019 @default.
- W2116795291 countsByYear W21167952912020 @default.
- W2116795291 countsByYear W21167952912021 @default.
- W2116795291 countsByYear W21167952912022 @default.
- W2116795291 countsByYear W21167952912023 @default.
- W2116795291 crossrefType "journal-article" @default.
- W2116795291 hasAuthorship W2116795291A5019444846 @default.
- W2116795291 hasAuthorship W2116795291A5090220956 @default.
- W2116795291 hasConcept C105795698 @default.
- W2116795291 hasConcept C107673813 @default.
- W2116795291 hasConcept C117251300 @default.
- W2116795291 hasConcept C119043178 @default.
- W2116795291 hasConcept C144024400 @default.
- W2116795291 hasConcept C149782125 @default.
- W2116795291 hasConcept C149923435 @default.
- W2116795291 hasConcept C154945302 @default.
- W2116795291 hasConcept C160234255 @default.
- W2116795291 hasConcept C177769412 @default.
- W2116795291 hasConcept C2776214188 @default.
- W2116795291 hasConcept C2908647359 @default.
- W2116795291 hasConcept C33923547 @default.
- W2116795291 hasConcept C36528806 @default.
- W2116795291 hasConcept C41008148 @default.
- W2116795291 hasConcept C58489278 @default.
- W2116795291 hasConceptScore W2116795291C105795698 @default.
- W2116795291 hasConceptScore W2116795291C107673813 @default.
- W2116795291 hasConceptScore W2116795291C117251300 @default.
- W2116795291 hasConceptScore W2116795291C119043178 @default.
- W2116795291 hasConceptScore W2116795291C144024400 @default.
- W2116795291 hasConceptScore W2116795291C149782125 @default.
- W2116795291 hasConceptScore W2116795291C149923435 @default.
- W2116795291 hasConceptScore W2116795291C154945302 @default.
- W2116795291 hasConceptScore W2116795291C160234255 @default.
- W2116795291 hasConceptScore W2116795291C177769412 @default.
- W2116795291 hasConceptScore W2116795291C2776214188 @default.
- W2116795291 hasConceptScore W2116795291C2908647359 @default.