Matches in SemOpenAlex for { <https://semopenalex.org/work/W2116795651> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2116795651 abstract "PreviousNext No AccessSEG Technical Program Expanded Abstracts 2006Diving‐wave refraction tomography and reflection tomography for velocity model buildingAuthors: Mehmet C. TanisHemang ShahPeter A. WatsonMark HarrisonSherman YangLee LuCharles CarvillMehmet C. TanisBP ExplorationSearch for more papers by this author, Hemang ShahBP ExplorationSearch for more papers by this author, Peter A. WatsonBP ExplorationSearch for more papers by this author, Mark HarrisonBP ExplorationSearch for more papers by this author, Sherman YangWesternGeco HoustonSearch for more papers by this author, Lee LuWesternGeco HoustonSearch for more papers by this author, and Charles CarvillWesternGeco HoustonSearch for more papers by this authorhttps://doi.org/10.1190/1.2370225 SectionsAboutPDF/ePub ToolsAdd to favoritesDownload CitationsTrack CitationsPermissions ShareFacebookTwitterLinked InRedditEmail Abstract Trinidad and Azerbaijan offshore areas are strongly affected by shallow gas anomalies which greatly attenuate seismic signals. Building velocity models in such areas with shallow water depths and gas can be a difficult task. Here we present two alternative ways to build reliable velocity models in the presence of shallow gas; one that is suitable to very shallow (<100m) and poor data quality areas and the other for deeper water depths. In the first instance, we make use of Diving‐Wave refraction tomography method to build shallow velocity models offshore Trinidad and Azerbaijan. Previous use of this method has been limited to processing seismic data to produce a shallow velocity model to determine static corrections in time processing. Our success is in using the velocity model derived from Diving‐Wave tomography as a starting model for reflection tomography in depth processing. We show that Diving‐Wave method is a robust technique that produces reliable near surface models in the presence of gas and in areas with low signal to noise ratio. In the second case, we show that where data has reasonable offset to work with, reflection tomography can produce fairly accurate and high fidelity velocity models that can be further improved with iterative migration velocity analysis. As a result, depending on available data quality, either Diving‐Wave derived shallow velocity model or reflection tomography derived model can be used to improve the ultimate product from iterative pre‐stack depth migration and reflection tomography.Permalink: https://doi.org/10.1190/1.2370225FiguresReferencesRelatedDetailsCited ByReconstruction of the Near-Surface Velocities with Trap Bodies by the Full Waveform Inversion12 October 2021Reconstruction of the Near-Surface Model in Complex Seismogeological Conditions of Eastern Siberia Utilizing Full Waveform Inversion with Varying Topography9 September 2021A compensatory velocity model building method with DWT and grid-based tomographyTongju Gong*, Miao Liu, Jianqing Guo, Qinghui Wei, Huangjin Zuo, and Zaiyu Ding31 May 2017Shallow gas cloud illumination analysis by the focal beam method29 January 2016 | Journal of Geophysics and Engineering, Vol. 13, No. 1Maximizing the value of 3D seismic vintage through state of art land depth imaging and quantitative quality controls - A case study at Yucal Placer field, VenezuelaYann Montico*, Jean Patrick Mascomère, and Xavier Duwattez19 August 2015Combining diving wave tomography and prestack reflection tomography for complex depth imaging- A case study from mountainous west ChinaMingshui Song, Xiaowei Lv, XiaoLi Han*, Dingxue Wang, Sherman Yang, and Curtis E. Hinz5 August 2014Combining diving-wave tomography and prestack reflection tomography for complex depth imaging — A case study from mountainous western ChinaMingshui Song, Xiaowei Lv, Xiao Li Han, Dingxue Wang, Sherman Yang, and Curtis E. Hinz5 August 2014 | The Leading Edge, Vol. 33, No. 8Benefits of constraints for velocity modeling a fault shadow: A case studyDerek Quigley, August Lau, Kyle Stewart, Chuan Yin, Angus Mann, and Alexis Fitzpatrick25 October 2012Use of refraction, reflection, and wave-equation-based tomography for imaging beneath shallow gas: A Trinidad field data exampleNurul Kabir, Uwe Albertin, Min Zhou, Vishal Nagassar, Einar Kjos, Phillip Whitaker, and Alan Ford1 October 2008 | GEOPHYSICS, Vol. 73, No. 5Resolution analysis for stereotomography in media with elliptic and anelliptic anisotropyBrenda Barbosa, Jessé Costa, Ellen Gomes, and Jörg Schleicher29 May 2008 | GEOPHYSICS, Vol. 73, No. 4Use of refraction, reflection and wave‐equation‐based tomography for imaging beneath the shallow gas: A Trinidad field data exampleNurul Kabir, Uwe Albertin, Min Zhou, Vishal Nagassar, Einar Kjos, and Phillip Whitaker14 September 2007 SEG Technical Program Expanded Abstracts 2006ISSN (print):1052-3812 ISSN (online):1949-4645Copyright: 2006 Pages: 3541 publication data© 2006 Copyright © 2006 Society of Exploration GeophysicistsPublisher:Society of Exploration Geophysicists HistoryPublished: 06 Oct 2006 CITATION INFORMATION Mehmet C. Tanis, Hemang Shah, Peter A. Watson, Mark Harrison, Sherman Yang, Lee Lu, and Charles Carvill, (2006), Diving‐wave refraction tomography and reflection tomography for velocity model building, SEG Technical Program Expanded Abstracts : 3340-3344. https://doi.org/10.1190/1.2370225 Plain-Language Summary PDF DownloadLoading ..." @default.
- W2116795651 created "2016-06-24" @default.
- W2116795651 creator A5010105288 @default.
- W2116795651 creator A5021879828 @default.
- W2116795651 creator A5028186154 @default.
- W2116795651 creator A5053590400 @default.
- W2116795651 creator A5064148759 @default.
- W2116795651 creator A5071005320 @default.
- W2116795651 creator A5080332674 @default.
- W2116795651 date "2006-01-01" @default.
- W2116795651 modified "2023-10-17" @default.
- W2116795651 title "Diving‐wave refraction tomography and reflection tomography for velocity model building" @default.
- W2116795651 cites W1997951413 @default.
- W2116795651 cites W2010370071 @default.
- W2116795651 cites W2096742044 @default.
- W2116795651 cites W2123297057 @default.
- W2116795651 doi "https://doi.org/10.1190/1.2370225" @default.
- W2116795651 hasPublicationYear "2006" @default.
- W2116795651 type Work @default.
- W2116795651 sameAs 2116795651 @default.
- W2116795651 citedByCount "15" @default.
- W2116795651 countsByYear W21167956512014 @default.
- W2116795651 countsByYear W21167956512015 @default.
- W2116795651 countsByYear W21167956512016 @default.
- W2116795651 countsByYear W21167956512017 @default.
- W2116795651 countsByYear W21167956512019 @default.
- W2116795651 countsByYear W21167956512021 @default.
- W2116795651 countsByYear W21167956512022 @default.
- W2116795651 countsByYear W21167956512023 @default.
- W2116795651 crossrefType "proceedings-article" @default.
- W2116795651 hasAuthorship W2116795651A5010105288 @default.
- W2116795651 hasAuthorship W2116795651A5021879828 @default.
- W2116795651 hasAuthorship W2116795651A5028186154 @default.
- W2116795651 hasAuthorship W2116795651A5053590400 @default.
- W2116795651 hasAuthorship W2116795651A5064148759 @default.
- W2116795651 hasAuthorship W2116795651A5071005320 @default.
- W2116795651 hasAuthorship W2116795651A5080332674 @default.
- W2116795651 hasConcept C111368507 @default.
- W2116795651 hasConcept C111461898 @default.
- W2116795651 hasConcept C120665830 @default.
- W2116795651 hasConcept C121332964 @default.
- W2116795651 hasConcept C122959257 @default.
- W2116795651 hasConcept C127313418 @default.
- W2116795651 hasConcept C162284963 @default.
- W2116795651 hasConcept C163716698 @default.
- W2116795651 hasConcept C165205528 @default.
- W2116795651 hasConcept C186348155 @default.
- W2116795651 hasConcept C187320778 @default.
- W2116795651 hasConcept C199360897 @default.
- W2116795651 hasConcept C205318122 @default.
- W2116795651 hasConcept C24890656 @default.
- W2116795651 hasConcept C2992352321 @default.
- W2116795651 hasConcept C41008148 @default.
- W2116795651 hasConcept C65682993 @default.
- W2116795651 hasConceptScore W2116795651C111368507 @default.
- W2116795651 hasConceptScore W2116795651C111461898 @default.
- W2116795651 hasConceptScore W2116795651C120665830 @default.
- W2116795651 hasConceptScore W2116795651C121332964 @default.
- W2116795651 hasConceptScore W2116795651C122959257 @default.
- W2116795651 hasConceptScore W2116795651C127313418 @default.
- W2116795651 hasConceptScore W2116795651C162284963 @default.
- W2116795651 hasConceptScore W2116795651C163716698 @default.
- W2116795651 hasConceptScore W2116795651C165205528 @default.
- W2116795651 hasConceptScore W2116795651C186348155 @default.
- W2116795651 hasConceptScore W2116795651C187320778 @default.
- W2116795651 hasConceptScore W2116795651C199360897 @default.
- W2116795651 hasConceptScore W2116795651C205318122 @default.
- W2116795651 hasConceptScore W2116795651C24890656 @default.
- W2116795651 hasConceptScore W2116795651C2992352321 @default.
- W2116795651 hasConceptScore W2116795651C41008148 @default.
- W2116795651 hasConceptScore W2116795651C65682993 @default.
- W2116795651 hasLocation W21167956511 @default.
- W2116795651 hasOpenAccess W2116795651 @default.
- W2116795651 hasPrimaryLocation W21167956511 @default.
- W2116795651 hasRelatedWork W1970986097 @default.
- W2116795651 hasRelatedWork W2071234476 @default.
- W2116795651 hasRelatedWork W2093648980 @default.
- W2116795651 hasRelatedWork W2116795651 @default.
- W2116795651 hasRelatedWork W2129108890 @default.
- W2116795651 hasRelatedWork W2375379775 @default.
- W2116795651 hasRelatedWork W2378988468 @default.
- W2116795651 hasRelatedWork W2608105472 @default.
- W2116795651 hasRelatedWork W3113596969 @default.
- W2116795651 hasRelatedWork W4252226173 @default.
- W2116795651 isParatext "false" @default.
- W2116795651 isRetracted "false" @default.
- W2116795651 magId "2116795651" @default.
- W2116795651 workType "article" @default.