Matches in SemOpenAlex for { <https://semopenalex.org/work/W2116798276> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2116798276 endingPage "681" @default.
- W2116798276 startingPage "661" @default.
- W2116798276 abstract "Climate change is a factor that largely contributes to the increase of forest areas affected by natural damages. Therefore, the development of methodologies for forest monitoring and rapid assessment of affected areas is required. Space-borne synthetic aperture radar (SAR) imagery with high resolution is now available for large-scale forest mapping and forest monitoring applications. However, a correct interpretation of SAR images requires an adequate preprocessing of the data consisting of orthorectification and radiometric calibration. The resolution and quality of the digital elevation model (DEM) used as reference is crucial for this purpose. Therefore, the primary aim of this study was to analyze the influence of the DEM quality used in the preprocessing of the SAR data on the mapping accuracy of forest types. In order to examine TerraSAR-X images to map forest dominated by deciduous and coniferous trees, High Resolution SpotLight images were acquired for two study sites in southern Germany. The SAR images were preprocessed with a Shuttle Radar Topography Mission (SRTM) DEM (resolution approximately 90 m), an airborne laser scanning (ALS) digital terrain model (DTM) (5 m resolution), and an ALS digital surface model (DSM) (5 m resolution). The orthorectification of the SAR images using high resolution ALS DEMs was found to be important for the reduction of errors in pixel location and to increase the classification accuracy of forest types. SAR images preprocessed with ALS DTMs resulted in the highest classification accuracies, with kappa coefficients of 0.49 and 0.41, respectively. SAR images preprocessed with ALS DTMs resulted in greater accuracy than those preprocessed with ALS DSMs in most cases. The classification accuracy of forest types using SAR images preprocessed with the SRTM DEM was fair, with kappa coefficients of 0.23 and 0.32, respectively.Analysis of the radar backscatter indicated that sample plots dominated by coniferous trees tended to have lower scattering coefficients than plots dominated by deciduous trees. Leaf-off images were only slightly better suited for the classification than leaf-on images. The combination of leaf-off and leaf-on improved the classification accuracy considerably since the backscatter changed between seasons, especially in deciduous-dominated forest." @default.
- W2116798276 created "2016-06-24" @default.
- W2116798276 creator A5012650236 @default.
- W2116798276 creator A5049274876 @default.
- W2116798276 creator A5059757014 @default.
- W2116798276 creator A5075301550 @default.
- W2116798276 date "2012-03-06" @default.
- W2116798276 modified "2023-09-25" @default.
- W2116798276 title "The Influence of DEM Quality on Mapping Accuracy of Coniferous- and Deciduous-Dominated Forest Using TerraSAR‑X Images" @default.
- W2116798276 cites W1965393380 @default.
- W2116798276 cites W1968491577 @default.
- W2116798276 cites W1969245801 @default.
- W2116798276 cites W1975522054 @default.
- W2116798276 cites W1979975745 @default.
- W2116798276 cites W1980687936 @default.
- W2116798276 cites W1990381576 @default.
- W2116798276 cites W2001108422 @default.
- W2116798276 cites W2005908526 @default.
- W2116798276 cites W2010004018 @default.
- W2116798276 cites W2035536636 @default.
- W2116798276 cites W2043254789 @default.
- W2116798276 cites W2064875349 @default.
- W2116798276 cites W2072810365 @default.
- W2116798276 cites W2077771185 @default.
- W2116798276 cites W2090314256 @default.
- W2116798276 cites W2092407139 @default.
- W2116798276 cites W2101773896 @default.
- W2116798276 cites W2106259126 @default.
- W2116798276 cites W2108797086 @default.
- W2116798276 cites W2109890875 @default.
- W2116798276 cites W2112931509 @default.
- W2116798276 cites W2123556582 @default.
- W2116798276 cites W2124469661 @default.
- W2116798276 cites W2136291141 @default.
- W2116798276 cites W2164777277 @default.
- W2116798276 doi "https://doi.org/10.3390/rs4030661" @default.
- W2116798276 hasPublicationYear "2012" @default.
- W2116798276 type Work @default.
- W2116798276 sameAs 2116798276 @default.
- W2116798276 citedByCount "19" @default.
- W2116798276 countsByYear W21167982762013 @default.
- W2116798276 countsByYear W21167982762014 @default.
- W2116798276 countsByYear W21167982762016 @default.
- W2116798276 countsByYear W21167982762017 @default.
- W2116798276 countsByYear W21167982762018 @default.
- W2116798276 countsByYear W21167982762019 @default.
- W2116798276 countsByYear W21167982762020 @default.
- W2116798276 countsByYear W21167982762021 @default.
- W2116798276 crossrefType "journal-article" @default.
- W2116798276 hasAuthorship W2116798276A5012650236 @default.
- W2116798276 hasAuthorship W2116798276A5049274876 @default.
- W2116798276 hasAuthorship W2116798276A5059757014 @default.
- W2116798276 hasAuthorship W2116798276A5075301550 @default.
- W2116798276 hasBestOaLocation W21167982761 @default.
- W2116798276 hasConcept C161840515 @default.
- W2116798276 hasConcept C181843262 @default.
- W2116798276 hasConcept C184149073 @default.
- W2116798276 hasConcept C205649164 @default.
- W2116798276 hasConcept C2983128922 @default.
- W2116798276 hasConcept C39432304 @default.
- W2116798276 hasConcept C41008148 @default.
- W2116798276 hasConcept C51399673 @default.
- W2116798276 hasConcept C58640448 @default.
- W2116798276 hasConcept C62649853 @default.
- W2116798276 hasConcept C82789328 @default.
- W2116798276 hasConcept C87360688 @default.
- W2116798276 hasConceptScore W2116798276C161840515 @default.
- W2116798276 hasConceptScore W2116798276C181843262 @default.
- W2116798276 hasConceptScore W2116798276C184149073 @default.
- W2116798276 hasConceptScore W2116798276C205649164 @default.
- W2116798276 hasConceptScore W2116798276C2983128922 @default.
- W2116798276 hasConceptScore W2116798276C39432304 @default.
- W2116798276 hasConceptScore W2116798276C41008148 @default.
- W2116798276 hasConceptScore W2116798276C51399673 @default.
- W2116798276 hasConceptScore W2116798276C58640448 @default.
- W2116798276 hasConceptScore W2116798276C62649853 @default.
- W2116798276 hasConceptScore W2116798276C82789328 @default.
- W2116798276 hasConceptScore W2116798276C87360688 @default.
- W2116798276 hasIssue "3" @default.
- W2116798276 hasLocation W21167982761 @default.
- W2116798276 hasOpenAccess W2116798276 @default.
- W2116798276 hasPrimaryLocation W21167982761 @default.
- W2116798276 hasRelatedWork W1974913876 @default.
- W2116798276 hasRelatedWork W1975989939 @default.
- W2116798276 hasRelatedWork W2051928093 @default.
- W2116798276 hasRelatedWork W2075770923 @default.
- W2116798276 hasRelatedWork W2116798276 @default.
- W2116798276 hasRelatedWork W2154789193 @default.
- W2116798276 hasRelatedWork W2556299634 @default.
- W2116798276 hasRelatedWork W2604080183 @default.
- W2116798276 hasRelatedWork W3133432721 @default.
- W2116798276 hasRelatedWork W844605193 @default.
- W2116798276 hasVolume "4" @default.
- W2116798276 isParatext "false" @default.
- W2116798276 isRetracted "false" @default.
- W2116798276 magId "2116798276" @default.
- W2116798276 workType "article" @default.