Matches in SemOpenAlex for { <https://semopenalex.org/work/W2116853241> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2116853241 endingPage "549" @default.
- W2116853241 startingPage "543" @default.
- W2116853241 abstract "One limitation in building empirically testable models in sociology is that many familiar statistical techniques such as least-squares regression analysis require interval-level measurements while sociologists often have only ordinal-level measurements. Fortunately there do exist statistical techniques that use ordinal measurements. In this article we consider several types of prediction procedures which use ordinal data, as input, including individual ordinal prediction procedures and pairwise ordinal prediction procedures. The latter were studied by Wilson (1971) who claimed that ordinal variables could neither be used to build empirically testable models nor to state substantive propositions rigorously. But his claims are weakened because (1) he states, but fails to prove, that a particular loss function is the only one that can be used in pairwise ordinal prediction procedures, (2) he ignores alternative types of ordinal prediction procedures, and (3) his main mathematical theorem is in error. We consider his arguments, salvage his theorem, and display a similar theorem for individual ordinal prediction procedures. We argue that, for the three reasons mentioned, Wilson's results do not show that it is unprofitable to use ordinal variables in prediction procedures. Finally we consider a generalized individual ordinal prediction procedure in which one ordinal variable is only useless for predicting a second ordinal variable if the two variables are statistically independent. The construction of empirically testable mathematical models is becoming increasingly important in sociological research. These models can yield precise and succinct information about complex social processes. But many popular statistical techniques such as leastsquares regression analysis require interval-level measurements while sociologists unfortunately often have only ordinal-level measurements.' Thus the temptation arises to treat ordinal variables as interval variables in order to apply familiar techniques. Debate has arisen over the appropriateness of using interval-level statistics with ordinal measurements. On the one hand Labowitz (1967; 1970) appeared to demonstrate empirically that the product-moment correlation is not greatly affected by random assignment (using a uniform distribution) of integer values to rank-order categories when the range of the values and the number of categories are both large. Similarly, Boyle (1970) and Leik and Gove (1969) demonstrate the utility of using the technique of causal modeling with ordinal variables. Finally, Good (1973) demonstrates that the correlation between two variables is not much affected by substituting powers of one of the variables for that variable unless the powers are very high. On the other hand, Mayer (1970; 1971), Vargo (1971), and Schweitzer and Schweitzer (1971) have argued mathematically that in extreme cases treating an ordinal variable as an interval variable can have disastrous consequences. In a recent article Wilson (1971) claims that ordinal variables cannot be used to build empirically testable models. The main purpose of the present article is to show that his arguments contain three flaws. First, although his comments appear to apply to the overall prob: The authors would like to acknowledge the helpful criticisms of the referees, and partial support from the Department of Health, Education and Welfare Grants ROI GM 18770 and R03 MH 21454. 1 For convenience we recall the definitions of nominal, ordinal, and interval scales of measurement. Nominal scales, or names, are such that only equality is relevant, and they are therefore invariant under all permutations. For ordinal scales or measurements, only inequalities and equalities are relevant, and they are therefore invariant under all (strictly) monotonic transformations. For interval scales, only ratios of differences. are relevant, and they are therefore invariant under all affine transformations. For a more extended discussion see, for example, Lea (1972)." @default.
- W2116853241 created "2016-06-24" @default.
- W2116853241 creator A5028584551 @default.
- W2116853241 creator A5069281353 @default.
- W2116853241 date "1974-06-01" @default.
- W2116853241 modified "2023-09-27" @default.
- W2116853241 title "On Ordinal Prediction Problems" @default.
- W2116853241 cites W1996374423 @default.
- W2116853241 cites W2016545579 @default.
- W2116853241 cites W2070888104 @default.
- W2116853241 cites W2081290757 @default.
- W2116853241 cites W2099202496 @default.
- W2116853241 cites W2317820620 @default.
- W2116853241 cites W2320023697 @default.
- W2116853241 cites W2332351612 @default.
- W2116853241 cites W760865763 @default.
- W2116853241 doi "https://doi.org/10.1093/sf/52.4.543" @default.
- W2116853241 hasPublicationYear "1974" @default.
- W2116853241 type Work @default.
- W2116853241 sameAs 2116853241 @default.
- W2116853241 citedByCount "1" @default.
- W2116853241 crossrefType "journal-article" @default.
- W2116853241 hasAuthorship W2116853241A5028584551 @default.
- W2116853241 hasAuthorship W2116853241A5069281353 @default.
- W2116853241 hasConcept C105795698 @default.
- W2116853241 hasConcept C110313322 @default.
- W2116853241 hasConcept C134306372 @default.
- W2116853241 hasConcept C149782125 @default.
- W2116853241 hasConcept C182365436 @default.
- W2116853241 hasConcept C184898388 @default.
- W2116853241 hasConcept C27574286 @default.
- W2116853241 hasConcept C2909711754 @default.
- W2116853241 hasConcept C33923547 @default.
- W2116853241 hasConcept C41008148 @default.
- W2116853241 hasConcept C81386100 @default.
- W2116853241 hasConcept C85461838 @default.
- W2116853241 hasConceptScore W2116853241C105795698 @default.
- W2116853241 hasConceptScore W2116853241C110313322 @default.
- W2116853241 hasConceptScore W2116853241C134306372 @default.
- W2116853241 hasConceptScore W2116853241C149782125 @default.
- W2116853241 hasConceptScore W2116853241C182365436 @default.
- W2116853241 hasConceptScore W2116853241C184898388 @default.
- W2116853241 hasConceptScore W2116853241C27574286 @default.
- W2116853241 hasConceptScore W2116853241C2909711754 @default.
- W2116853241 hasConceptScore W2116853241C33923547 @default.
- W2116853241 hasConceptScore W2116853241C41008148 @default.
- W2116853241 hasConceptScore W2116853241C81386100 @default.
- W2116853241 hasConceptScore W2116853241C85461838 @default.
- W2116853241 hasIssue "4" @default.
- W2116853241 hasLocation W21168532411 @default.
- W2116853241 hasOpenAccess W2116853241 @default.
- W2116853241 hasPrimaryLocation W21168532411 @default.
- W2116853241 hasRelatedWork W12245731 @default.
- W2116853241 hasRelatedWork W126818251 @default.
- W2116853241 hasRelatedWork W1971988273 @default.
- W2116853241 hasRelatedWork W1974914586 @default.
- W2116853241 hasRelatedWork W2088178497 @default.
- W2116853241 hasRelatedWork W2099100072 @default.
- W2116853241 hasRelatedWork W2103945627 @default.
- W2116853241 hasRelatedWork W2114774548 @default.
- W2116853241 hasRelatedWork W2145586949 @default.
- W2116853241 hasRelatedWork W2256260541 @default.
- W2116853241 hasRelatedWork W2270210407 @default.
- W2116853241 hasRelatedWork W2286611289 @default.
- W2116853241 hasRelatedWork W2321648253 @default.
- W2116853241 hasRelatedWork W2328989698 @default.
- W2116853241 hasRelatedWork W2331401858 @default.
- W2116853241 hasRelatedWork W242894378 @default.
- W2116853241 hasRelatedWork W2479236352 @default.
- W2116853241 hasRelatedWork W2810071551 @default.
- W2116853241 hasRelatedWork W2947640307 @default.
- W2116853241 hasRelatedWork W3040916679 @default.
- W2116853241 hasVolume "52" @default.
- W2116853241 isParatext "false" @default.
- W2116853241 isRetracted "false" @default.
- W2116853241 magId "2116853241" @default.
- W2116853241 workType "article" @default.