Matches in SemOpenAlex for { <https://semopenalex.org/work/W2116906236> ?p ?o ?g. }
- W2116906236 endingPage "1267" @default.
- W2116906236 startingPage "1241" @default.
- W2116906236 abstract "Areal interpolation is the procedure of using known attribute values at a set of (source) areal units to predict unknown attribute values at another set of (target) units. Geostatistical areal interpolation employs spatial prediction algorithms, that is, variants of Kriging, which explicitly incorporate spatial autocorrelation and scale differences between source and target units in the interpolation endeavor. When all the available source measurements are used for interpolation, that is, when a global search neighborhood is adopted, geostatistical areal interpolation is extremely computationally intensive. Interpolation in this case requires huge memory space and massive computing power, even with the dramatic improvement introduced by the spectral algorithms developed by Kyriakidis et al. (2005 Kyriakidis, P.C., Schneider, P. and Goodchild, M.F. 2005. “Improving spatial data interoperability using geostatistical support-to-support interpolation”. In Proceedings of geoComputation, Ann Arbor, MI: University of Michigan. [Google Scholar]. Improving spatial data interoperability using geostatistical support-to-support interpolation. In: Proceedings of geoComputation. Ann Arbor, MI: University of Michigan) and Liu et al. (2006 Liu, Y., Jiang, Y. and Kyriakidis, P. 2006. Calculation of average covariance using fast Fourier transform (FFT), Menlo Park, CA: Stanford Center for Reservoir Forecasting, Petroleum Engineering Department, Stanford University. [Google Scholar]. Calculation of average covariance using fast Fourier transform (FFT). Menlo Park, CA: Stanford Center for Reservoir Forecasting, Petroleum Engineering Department, Stanford University) based on the fast Fourier transform (FFT). In this study, a parallel FFT-based geostatistical areal interpolation algorithm was developed to tackle the computational challenge of such problems. The algorithm includes three parallel processes: (1) the computation of source-to-source and source-to-target covariance matrices by means of FFT; (2) the QR factorization of the source-to-source covariance matrix; and (3) the computation of source-to-target weights via Kriging, and the subsequent computation of predicted attribute values for the target supports. Experiments with real-world datasets (i.e., predicting population densities of watersheds from population densities of counties in the Eastern Time Zone and in the continental United States) showed that the parallel algorithm drastically reduced the computing time to a practical length that is feasible for actual spatial analysis applications, and achieved fairly high speed-ups and efficiencies. Experiments also showed the algorithm scaled reasonably well as the number of processors increased and as the problem size increased." @default.
- W2116906236 created "2016-06-24" @default.
- W2116906236 creator A5001404194 @default.
- W2116906236 creator A5034901180 @default.
- W2116906236 creator A5063647157 @default.
- W2116906236 date "2011-08-01" @default.
- W2116906236 modified "2023-09-30" @default.
- W2116906236 title "A parallel computing approach to fast geostatistical areal interpolation" @default.
- W2116906236 cites W1507999763 @default.
- W2116906236 cites W1551446834 @default.
- W2116906236 cites W1764984001 @default.
- W2116906236 cites W1889102735 @default.
- W2116906236 cites W1997395365 @default.
- W2116906236 cites W1998051997 @default.
- W2116906236 cites W2004905019 @default.
- W2116906236 cites W2014988121 @default.
- W2116906236 cites W2025397485 @default.
- W2116906236 cites W2028704100 @default.
- W2116906236 cites W2032079501 @default.
- W2116906236 cites W2041474026 @default.
- W2116906236 cites W2059195846 @default.
- W2116906236 cites W2060054201 @default.
- W2116906236 cites W2067179311 @default.
- W2116906236 cites W2078349096 @default.
- W2116906236 cites W2087314423 @default.
- W2116906236 cites W2903691225 @default.
- W2116906236 cites W3004184795 @default.
- W2116906236 cites W4210300258 @default.
- W2116906236 cites W4211131047 @default.
- W2116906236 cites W4236354984 @default.
- W2116906236 cites W4319293043 @default.
- W2116906236 doi "https://doi.org/10.1080/13658816.2011.563744" @default.
- W2116906236 hasPublicationYear "2011" @default.
- W2116906236 type Work @default.
- W2116906236 sameAs 2116906236 @default.
- W2116906236 citedByCount "50" @default.
- W2116906236 countsByYear W21169062362012 @default.
- W2116906236 countsByYear W21169062362013 @default.
- W2116906236 countsByYear W21169062362014 @default.
- W2116906236 countsByYear W21169062362015 @default.
- W2116906236 countsByYear W21169062362016 @default.
- W2116906236 countsByYear W21169062362017 @default.
- W2116906236 countsByYear W21169062362018 @default.
- W2116906236 countsByYear W21169062362019 @default.
- W2116906236 countsByYear W21169062362020 @default.
- W2116906236 countsByYear W21169062362021 @default.
- W2116906236 countsByYear W21169062362022 @default.
- W2116906236 countsByYear W21169062362023 @default.
- W2116906236 crossrefType "journal-article" @default.
- W2116906236 hasAuthorship W2116906236A5001404194 @default.
- W2116906236 hasAuthorship W2116906236A5034901180 @default.
- W2116906236 hasAuthorship W2116906236A5063647157 @default.
- W2116906236 hasBestOaLocation W21169062362 @default.
- W2116906236 hasConcept C105795698 @default.
- W2116906236 hasConcept C11413529 @default.
- W2116906236 hasConcept C119857082 @default.
- W2116906236 hasConcept C121684516 @default.
- W2116906236 hasConcept C125572338 @default.
- W2116906236 hasConcept C137800194 @default.
- W2116906236 hasConcept C159620131 @default.
- W2116906236 hasConcept C178650346 @default.
- W2116906236 hasConcept C203332170 @default.
- W2116906236 hasConcept C205203396 @default.
- W2116906236 hasConcept C205649164 @default.
- W2116906236 hasConcept C31972630 @default.
- W2116906236 hasConcept C33923547 @default.
- W2116906236 hasConcept C41008148 @default.
- W2116906236 hasConcept C502989409 @default.
- W2116906236 hasConcept C62649853 @default.
- W2116906236 hasConcept C75172450 @default.
- W2116906236 hasConcept C81692654 @default.
- W2116906236 hasConcept C94747663 @default.
- W2116906236 hasConceptScore W2116906236C105795698 @default.
- W2116906236 hasConceptScore W2116906236C11413529 @default.
- W2116906236 hasConceptScore W2116906236C119857082 @default.
- W2116906236 hasConceptScore W2116906236C121684516 @default.
- W2116906236 hasConceptScore W2116906236C125572338 @default.
- W2116906236 hasConceptScore W2116906236C137800194 @default.
- W2116906236 hasConceptScore W2116906236C159620131 @default.
- W2116906236 hasConceptScore W2116906236C178650346 @default.
- W2116906236 hasConceptScore W2116906236C203332170 @default.
- W2116906236 hasConceptScore W2116906236C205203396 @default.
- W2116906236 hasConceptScore W2116906236C205649164 @default.
- W2116906236 hasConceptScore W2116906236C31972630 @default.
- W2116906236 hasConceptScore W2116906236C33923547 @default.
- W2116906236 hasConceptScore W2116906236C41008148 @default.
- W2116906236 hasConceptScore W2116906236C502989409 @default.
- W2116906236 hasConceptScore W2116906236C62649853 @default.
- W2116906236 hasConceptScore W2116906236C75172450 @default.
- W2116906236 hasConceptScore W2116906236C81692654 @default.
- W2116906236 hasConceptScore W2116906236C94747663 @default.
- W2116906236 hasIssue "8" @default.
- W2116906236 hasLocation W21169062361 @default.
- W2116906236 hasLocation W21169062362 @default.
- W2116906236 hasLocation W21169062363 @default.
- W2116906236 hasOpenAccess W2116906236 @default.
- W2116906236 hasPrimaryLocation W21169062361 @default.
- W2116906236 hasRelatedWork W1483354125 @default.