Matches in SemOpenAlex for { <https://semopenalex.org/work/W2116972303> ?p ?o ?g. }
- W2116972303 endingPage "4654" @default.
- W2116972303 startingPage "4639" @default.
- W2116972303 abstract "Several studies have shown that there is a strong relationship between the distribution of crenarchaeotal isoprenoid glycerol dibiphytanyl glycerol tetraethers (GDGTs) and sea surface temperature (SST). Based on this, a ratio of certain GDGTs, called TEX 86 (TetraEther indeX of tetraethers consisting of 86 carbon atoms), was developed as a SST proxy. In this study, we determined the distribution of crenarchaeotal isoprenoid GDGTs in 116 core-top sediments mostly from (sub)polar oceans and combined these data with previously published core-top data. Using this extended global core-top dataset ( n = 426), we re-assessed the relationship of crenarchaeal isoprenoid GDGTs with SST. We excluded data from the Red Sea from the global core-top dataset to define new indices and calibration models, as the Red Sea with its elevated salinity appeared to behave differently compared to other parts of the oceans. We tested our new indices and calibration models on three different paleo datasets, representing different temperature ranges. Our results indicate that the crenarchaeol regio-isomer plays a more important role for temperature adaptation in (sub)tropical oceans than in (sub)polar oceans, suggesting that there may be differences in membrane adaptation of the resident crenarchaeotal communities at different temperatures. We, therefore, suggest to apply two different calibration models. For the whole calibration temperature range (−3 to 30 °C), a modified version of TEX 86 with a logarithmic function which does not include the crenarchaeol regio-isomer, called TEX 86 L , is shown to correlate best with SST: SST = 67.5 × TEX 86 L + 46.9 ( r 2 = 0.86, n=396, p <0.0001). Application of TEX 86 L on sediments from the subpolar Southern Ocean results in realistic absolute SST estimates and a similar SST trend compared to a diatom SST record from the same core. TEX 86 H , which is defined as the logarithmic function of TEX 86 , yields the best correlation with SST, when the data from the (sub)polar oceans are removed: SST = 68.4 × TEX 86 L + 38.6 ( r 2 = 00.87, n = 255, p < 0.0001). Furthermore, TEX 86 L gives the best correlation for mescosm data with temperatures ranging between 10 and 46 °C. For Quaternary sediments from the tropical Arabian Sea, both TEX 86 L and TEX 86 H yield similar trends and SST estimates. However, the extrapolation of TEX 86 H calibration on a sediment record from a greenhouse world ocean predicts more reliable absolute SST estimates and relative SST changes in agreement with estimates based on the δ 18 O of planktonic foraminifera. Based on the comparison of TEX 86 L and TEX 86 H derived SSTs using the core top data, we recommend applying TEX 86 H above 15 °C and TEX 86 L below 15 °C. In cases where paleorecords encompass temperatures both below and above 15 °C, we suggest to use TEX 86 L ." @default.
- W2116972303 created "2016-06-24" @default.
- W2116972303 creator A5002422870 @default.
- W2116972303 creator A5003143276 @default.
- W2116972303 creator A5015450343 @default.
- W2116972303 creator A5020282158 @default.
- W2116972303 creator A5025073569 @default.
- W2116972303 creator A5025470307 @default.
- W2116972303 creator A5052001750 @default.
- W2116972303 creator A5087017093 @default.
- W2116972303 creator A5090370067 @default.
- W2116972303 date "2010-08-01" @default.
- W2116972303 modified "2023-10-17" @default.
- W2116972303 title "New indices and calibrations derived from the distribution of crenarchaeal isoprenoid tetraether lipids: Implications for past sea surface temperature reconstructions" @default.
- W2116972303 cites W1531643369 @default.
- W2116972303 cites W1562621146 @default.
- W2116972303 cites W1645042569 @default.
- W2116972303 cites W1671785718 @default.
- W2116972303 cites W1873043983 @default.
- W2116972303 cites W1938705403 @default.
- W2116972303 cites W1972930883 @default.
- W2116972303 cites W1983436559 @default.
- W2116972303 cites W2001400767 @default.
- W2116972303 cites W2005832186 @default.
- W2116972303 cites W2028360015 @default.
- W2116972303 cites W2034424911 @default.
- W2116972303 cites W2039307206 @default.
- W2116972303 cites W2044420278 @default.
- W2116972303 cites W2051623090 @default.
- W2116972303 cites W2066102571 @default.
- W2116972303 cites W2066831210 @default.
- W2116972303 cites W2076574789 @default.
- W2116972303 cites W2084398483 @default.
- W2116972303 cites W2094137719 @default.
- W2116972303 cites W2094953080 @default.
- W2116972303 cites W2104208100 @default.
- W2116972303 cites W2113387025 @default.
- W2116972303 cites W2115338073 @default.
- W2116972303 cites W2116005247 @default.
- W2116972303 cites W2118387673 @default.
- W2116972303 cites W2120033431 @default.
- W2116972303 cites W2120560331 @default.
- W2116972303 cites W2124232561 @default.
- W2116972303 cites W2126256025 @default.
- W2116972303 cites W2130167404 @default.
- W2116972303 cites W2130896789 @default.
- W2116972303 cites W2135057795 @default.
- W2116972303 cites W2136474070 @default.
- W2116972303 cites W2137856147 @default.
- W2116972303 cites W2138717680 @default.
- W2116972303 cites W2140606096 @default.
- W2116972303 cites W2141648278 @default.
- W2116972303 cites W2145215021 @default.
- W2116972303 cites W2146195962 @default.
- W2116972303 cites W2149426428 @default.
- W2116972303 cites W2153543026 @default.
- W2116972303 cites W2157578742 @default.
- W2116972303 cites W2160827105 @default.
- W2116972303 cites W2169458900 @default.
- W2116972303 cites W2178583595 @default.
- W2116972303 cites W4250281959 @default.
- W2116972303 doi "https://doi.org/10.1016/j.gca.2010.05.027" @default.
- W2116972303 hasPublicationYear "2010" @default.
- W2116972303 type Work @default.
- W2116972303 sameAs 2116972303 @default.
- W2116972303 citedByCount "566" @default.
- W2116972303 countsByYear W21169723032012 @default.
- W2116972303 countsByYear W21169723032013 @default.
- W2116972303 countsByYear W21169723032014 @default.
- W2116972303 countsByYear W21169723032015 @default.
- W2116972303 countsByYear W21169723032016 @default.
- W2116972303 countsByYear W21169723032017 @default.
- W2116972303 countsByYear W21169723032018 @default.
- W2116972303 countsByYear W21169723032019 @default.
- W2116972303 countsByYear W21169723032020 @default.
- W2116972303 countsByYear W21169723032021 @default.
- W2116972303 countsByYear W21169723032022 @default.
- W2116972303 countsByYear W21169723032023 @default.
- W2116972303 crossrefType "journal-article" @default.
- W2116972303 hasAuthorship W2116972303A5002422870 @default.
- W2116972303 hasAuthorship W2116972303A5003143276 @default.
- W2116972303 hasAuthorship W2116972303A5015450343 @default.
- W2116972303 hasAuthorship W2116972303A5020282158 @default.
- W2116972303 hasAuthorship W2116972303A5025073569 @default.
- W2116972303 hasAuthorship W2116972303A5025470307 @default.
- W2116972303 hasAuthorship W2116972303A5052001750 @default.
- W2116972303 hasAuthorship W2116972303A5087017093 @default.
- W2116972303 hasAuthorship W2116972303A5090370067 @default.
- W2116972303 hasConcept C105795698 @default.
- W2116972303 hasConcept C111368507 @default.
- W2116972303 hasConcept C121332964 @default.
- W2116972303 hasConcept C127313418 @default.
- W2116972303 hasConcept C1276947 @default.
- W2116972303 hasConcept C129513315 @default.
- W2116972303 hasConcept C134097258 @default.
- W2116972303 hasConcept C165838908 @default.
- W2116972303 hasConcept C185592680 @default.
- W2116972303 hasConcept C23715911 @default.