Matches in SemOpenAlex for { <https://semopenalex.org/work/W2116985728> ?p ?o ?g. }
- W2116985728 abstract "Abstract Background Expanded polytetrafluoroethylene (ePTFE) vascular grafts frequently develop occlusive neointimal hyperplasia as a result of myofibroblast over-growth, leading to graft failure. ePTFE exhibits higher ultrasound attenuation than native soft tissues. We modelled the selective absorption of ultrasound by ePTFE, and explored the feasibility of preventing hyperplasia in ePTFE grafts by ultrasound heating. Specifically, we simulated the temperature profiles of implanted grafts and nearby soft tissues and blood under ultrasound exposure. The goal was to determine whether ultrasound exposure of an ePTFE graft can generate temperatures sufficient to prevent cell growth on the graft without damaging nearby soft tissues and blood. Methods Ultrasound beams from two transducers (1.5 and 3.2 MHz) were simulated in two graft/tissue models, with and without an intra-graft cellular layer mimicking hyperplasia, using the finite-difference time-domain (FDTD) method. The resulting power deposition patterns were used as a heat source for the Pennes bioheat equation in a COMSOL ® Multiphysics heat transfer model. 50°C is known to cause cell death and therefore the transducer powers were adjusted to produce a 13°C temperature rise from 37°C in the ePTFE. Results Simulations showed that both the frequency of the transducers and the presence of hyperplasia significantly affect the power deposition patterns and subsequent temperature profiles on the grafts and nearby tissues. While neither transducer significantly raised the temperature of the blood, the 1.5-MHz transducer was less focused and heated larger volumes of the graft and nearby soft tissues than the 3.2-MHz transducer. The presence of hyperplasia had little effect on the blood's temperature, but further increased the temperature of the graft and nearby soft tissues in response to either transducer. Skin cooling and blood flow play a significant role in preventing overheating of the native tissues. Conclusions Modelling shows that ultrasound can selectively heat ePTFE grafts and produce temperatures that cause cell death on the graft. The temperature increase in blood is negligible and that in the adjacent soft tissues may be minimized by skin cooling and using appropriate transducers. Therefore, ultrasound heating may have the potential to reduce neointimal hyperplasia and failure of ePTFE vascular grafts." @default.
- W2116985728 created "2016-06-24" @default.
- W2116985728 creator A5016601592 @default.
- W2116985728 creator A5043448627 @default.
- W2116985728 creator A5054409151 @default.
- W2116985728 creator A5059652076 @default.
- W2116985728 creator A5084822815 @default.
- W2116985728 date "2011-11-03" @default.
- W2116985728 modified "2023-10-16" @default.
- W2116985728 title "Modelling ultrasound-induced mild hyperthermia of hyperplasia in vascular grafts" @default.
- W2116985728 cites W1554436467 @default.
- W2116985728 cites W192500449 @default.
- W2116985728 cites W1948181060 @default.
- W2116985728 cites W1964826356 @default.
- W2116985728 cites W1968483939 @default.
- W2116985728 cites W1969502142 @default.
- W2116985728 cites W1978129617 @default.
- W2116985728 cites W1986267697 @default.
- W2116985728 cites W1987306208 @default.
- W2116985728 cites W1995908040 @default.
- W2116985728 cites W1999827316 @default.
- W2116985728 cites W2023315654 @default.
- W2116985728 cites W2024206283 @default.
- W2116985728 cites W2028804805 @default.
- W2116985728 cites W2034319316 @default.
- W2116985728 cites W2055336074 @default.
- W2116985728 cites W2064527547 @default.
- W2116985728 cites W2084365539 @default.
- W2116985728 cites W2092232212 @default.
- W2116985728 cites W2092288976 @default.
- W2116985728 cites W2104941151 @default.
- W2116985728 cites W2115762673 @default.
- W2116985728 cites W2115971953 @default.
- W2116985728 cites W2116690382 @default.
- W2116985728 cites W2119381251 @default.
- W2116985728 cites W2119785324 @default.
- W2116985728 cites W2134941807 @default.
- W2116985728 cites W2138564856 @default.
- W2116985728 cites W2145352998 @default.
- W2116985728 cites W2148435759 @default.
- W2116985728 cites W2149492643 @default.
- W2116985728 cites W2168697901 @default.
- W2116985728 cites W2171312296 @default.
- W2116985728 cites W4255795828 @default.
- W2116985728 doi "https://doi.org/10.1186/1742-4682-8-42" @default.
- W2116985728 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3217891" @default.
- W2116985728 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22054016" @default.
- W2116985728 hasPublicationYear "2011" @default.
- W2116985728 type Work @default.
- W2116985728 sameAs 2116985728 @default.
- W2116985728 citedByCount "3" @default.
- W2116985728 countsByYear W21169857282015 @default.
- W2116985728 countsByYear W21169857282016 @default.
- W2116985728 countsByYear W21169857282021 @default.
- W2116985728 crossrefType "journal-article" @default.
- W2116985728 hasAuthorship W2116985728A5016601592 @default.
- W2116985728 hasAuthorship W2116985728A5043448627 @default.
- W2116985728 hasAuthorship W2116985728A5054409151 @default.
- W2116985728 hasAuthorship W2116985728A5059652076 @default.
- W2116985728 hasAuthorship W2116985728A5084822815 @default.
- W2116985728 hasBestOaLocation W21169857281 @default.
- W2116985728 hasConcept C121332964 @default.
- W2116985728 hasConcept C126838900 @default.
- W2116985728 hasConcept C135628077 @default.
- W2116985728 hasConcept C136229726 @default.
- W2116985728 hasConcept C141071460 @default.
- W2116985728 hasConcept C142724271 @default.
- W2116985728 hasConcept C143753070 @default.
- W2116985728 hasConcept C186725500 @default.
- W2116985728 hasConcept C192562407 @default.
- W2116985728 hasConcept C24890656 @default.
- W2116985728 hasConcept C2777562237 @default.
- W2116985728 hasConcept C2778095995 @default.
- W2116985728 hasConcept C2778283817 @default.
- W2116985728 hasConcept C2778583881 @default.
- W2116985728 hasConcept C46435376 @default.
- W2116985728 hasConcept C50517652 @default.
- W2116985728 hasConcept C56318395 @default.
- W2116985728 hasConcept C57879066 @default.
- W2116985728 hasConcept C71924100 @default.
- W2116985728 hasConcept C97355855 @default.
- W2116985728 hasConceptScore W2116985728C121332964 @default.
- W2116985728 hasConceptScore W2116985728C126838900 @default.
- W2116985728 hasConceptScore W2116985728C135628077 @default.
- W2116985728 hasConceptScore W2116985728C136229726 @default.
- W2116985728 hasConceptScore W2116985728C141071460 @default.
- W2116985728 hasConceptScore W2116985728C142724271 @default.
- W2116985728 hasConceptScore W2116985728C143753070 @default.
- W2116985728 hasConceptScore W2116985728C186725500 @default.
- W2116985728 hasConceptScore W2116985728C192562407 @default.
- W2116985728 hasConceptScore W2116985728C24890656 @default.
- W2116985728 hasConceptScore W2116985728C2777562237 @default.
- W2116985728 hasConceptScore W2116985728C2778095995 @default.
- W2116985728 hasConceptScore W2116985728C2778283817 @default.
- W2116985728 hasConceptScore W2116985728C2778583881 @default.
- W2116985728 hasConceptScore W2116985728C46435376 @default.
- W2116985728 hasConceptScore W2116985728C50517652 @default.
- W2116985728 hasConceptScore W2116985728C56318395 @default.
- W2116985728 hasConceptScore W2116985728C57879066 @default.
- W2116985728 hasConceptScore W2116985728C71924100 @default.