Matches in SemOpenAlex for { <https://semopenalex.org/work/W2117079848> ?p ?o ?g. }
- W2117079848 endingPage "1237" @default.
- W2117079848 startingPage "1219" @default.
- W2117079848 abstract "In this paper, we propose a model-based bandwidth prediction scheme for variable-bit-rate (VBR) video traffic with regular group of pictures (GOP) pattern. Multiplicative ARIMA (autoregressive integrated moving-average) process called GOP ARIMA (ARIMA for GOP) is used as a base stochastic model, which consists of two key ingredients: prediction and model validity check. For traffic prediction, we deploy a Kalman filter over GOP ARIMA model, and confidence interval analysis for validity determination. The GOP ARIMA mPodel explicitly models inter and intra-GOP frame size correlations and the Kalman filter-based prediction maintains ?state? across the prediction rounds. Synergy of the two successfully addresses a number of challenging issues, such as a unified framework for frame type dependent prediction, accurate prediction, and robustness against noise. With few exceptions, a single video session consists of several scenes whose bandwidth process may exhibit different stochastic nature, which hinders recursive adjustment of parameters in Kalman filter, because its stochastic model structure is fixed at its deployment. To effectively address this issue, the proposed prediction scheme harbors a statistical hypothesis test in the prediction framework. By formulating the confidence interval of a prediction in terms of Kalman filter components, it not only <i xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>predicts</i> the frame size but also <i xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>determines</i> validity of the stochastic model. Based upon the results of the model validity check, the proposed prediction scheme updates the structures of the underlying GOP ARIMA model. We perform a comprehensive performance study using publicly available MPEG-2 and MPEG-4 traces. We compare the prediction accuracy of four different prediction schemes. In all traces, the proposed model yields superior prediction accuracy than the other prediction schemes. We show that confidence interval analysis effectively detects the structural changes in the sample sequence and that properly updating the model results in more accurate prediction. However, model update requires a certain length of observation period, e.g., 60 frames (2 s). Due to this learning overhead, the advantage of model update becomes less significant when scene length is short. Through queueing simulation, we examine the effect of prediction accuracy over user perceivable QoS. The proposed bandwidth prediction scheme allocates less 50% of the queue(buffer) compared to the other bandwidth prediction schemes, but still yields better packet loss behavior." @default.
- W2117079848 created "2016-06-24" @default.
- W2117079848 creator A5013502438 @default.
- W2117079848 creator A5026149237 @default.
- W2117079848 creator A5086099774 @default.
- W2117079848 creator A5089091220 @default.
- W2117079848 date "2010-03-01" @default.
- W2117079848 modified "2023-10-18" @default.
- W2117079848 title "On-Line Prediction of Nonstationary Variable-Bit-Rate Video Traffic" @default.
- W2117079848 cites W1963878379 @default.
- W2117079848 cites W1975879068 @default.
- W2117079848 cites W1977991519 @default.
- W2117079848 cites W1981568828 @default.
- W2117079848 cites W2009011646 @default.
- W2117079848 cites W2019252977 @default.
- W2117079848 cites W2029773072 @default.
- W2117079848 cites W2069390660 @default.
- W2117079848 cites W2073400478 @default.
- W2117079848 cites W2093590637 @default.
- W2117079848 cites W2093601931 @default.
- W2117079848 cites W2093902973 @default.
- W2117079848 cites W2096004598 @default.
- W2117079848 cites W2098214895 @default.
- W2117079848 cites W2099131320 @default.
- W2117079848 cites W2100828379 @default.
- W2117079848 cites W2102541663 @default.
- W2117079848 cites W2103414083 @default.
- W2117079848 cites W2103895938 @default.
- W2117079848 cites W2108583241 @default.
- W2117079848 cites W2115122866 @default.
- W2117079848 cites W2118371954 @default.
- W2117079848 cites W2120446174 @default.
- W2117079848 cites W2124883717 @default.
- W2117079848 cites W2125063726 @default.
- W2117079848 cites W2132454736 @default.
- W2117079848 cites W2135287481 @default.
- W2117079848 cites W2141873012 @default.
- W2117079848 cites W2143215115 @default.
- W2117079848 cites W2148572220 @default.
- W2117079848 cites W2157638525 @default.
- W2117079848 cites W2158712333 @default.
- W2117079848 cites W2158830132 @default.
- W2117079848 cites W2159135712 @default.
- W2117079848 cites W2159156181 @default.
- W2117079848 cites W2160265695 @default.
- W2117079848 cites W2161561492 @default.
- W2117079848 cites W2162314255 @default.
- W2117079848 cites W2163654538 @default.
- W2117079848 cites W2165184405 @default.
- W2117079848 cites W2165620401 @default.
- W2117079848 cites W2172166335 @default.
- W2117079848 cites W2561727487 @default.
- W2117079848 cites W2798056406 @default.
- W2117079848 cites W4241115065 @default.
- W2117079848 cites W4294541288 @default.
- W2117079848 cites W1826345205 @default.
- W2117079848 cites W2168076106 @default.
- W2117079848 doi "https://doi.org/10.1109/tsp.2009.2035983" @default.
- W2117079848 hasPublicationYear "2010" @default.
- W2117079848 type Work @default.
- W2117079848 sameAs 2117079848 @default.
- W2117079848 citedByCount "28" @default.
- W2117079848 countsByYear W21170798482012 @default.
- W2117079848 countsByYear W21170798482013 @default.
- W2117079848 countsByYear W21170798482014 @default.
- W2117079848 countsByYear W21170798482015 @default.
- W2117079848 countsByYear W21170798482016 @default.
- W2117079848 countsByYear W21170798482017 @default.
- W2117079848 countsByYear W21170798482018 @default.
- W2117079848 countsByYear W21170798482019 @default.
- W2117079848 countsByYear W21170798482020 @default.
- W2117079848 countsByYear W21170798482021 @default.
- W2117079848 countsByYear W21170798482022 @default.
- W2117079848 countsByYear W21170798482023 @default.
- W2117079848 crossrefType "journal-article" @default.
- W2117079848 hasAuthorship W2117079848A5013502438 @default.
- W2117079848 hasAuthorship W2117079848A5026149237 @default.
- W2117079848 hasAuthorship W2117079848A5086099774 @default.
- W2117079848 hasAuthorship W2117079848A5089091220 @default.
- W2117079848 hasConcept C105795698 @default.
- W2117079848 hasConcept C11413529 @default.
- W2117079848 hasConcept C119857082 @default.
- W2117079848 hasConcept C151406439 @default.
- W2117079848 hasConcept C154945302 @default.
- W2117079848 hasConcept C157286648 @default.
- W2117079848 hasConcept C159877910 @default.
- W2117079848 hasConcept C24338571 @default.
- W2117079848 hasConcept C33923547 @default.
- W2117079848 hasConcept C41008148 @default.
- W2117079848 hasConceptScore W2117079848C105795698 @default.
- W2117079848 hasConceptScore W2117079848C11413529 @default.
- W2117079848 hasConceptScore W2117079848C119857082 @default.
- W2117079848 hasConceptScore W2117079848C151406439 @default.
- W2117079848 hasConceptScore W2117079848C154945302 @default.
- W2117079848 hasConceptScore W2117079848C157286648 @default.
- W2117079848 hasConceptScore W2117079848C159877910 @default.
- W2117079848 hasConceptScore W2117079848C24338571 @default.
- W2117079848 hasConceptScore W2117079848C33923547 @default.