Matches in SemOpenAlex for { <https://semopenalex.org/work/W2117084652> ?p ?o ?g. }
- W2117084652 endingPage "477" @default.
- W2117084652 startingPage "451" @default.
- W2117084652 abstract "The need to correct garbled strings arises in many areas of natural language processing. If a dictionary is available that covers all possible input tokens, a natural set of candidates for correcting an erroneous input P is the set of all words in the dictionary for which the Levenshtein distance to Pdoes not exceed a given (small) bound k. In this article we describe methods for efficiently selecting such candidate sets. After introducing as a starting point a basic correction method based on the concept of a “universal Levenshtein automaton,” we show how two filtering methods known from the field of approximate text search can be used to improve the basic procedure in a significant way. The first method, which uses standard dictionaries plus dictionaries with reversed words, leads to very short correction times for most classes of input strings. Our evaluation results demonstrate that correction times for fixed-distance bounds depend on the expected number of correction candidates, which decreases for longer input words. Similarly the choice of an optimal filtering method depends on the length of the input words." @default.
- W2117084652 created "2016-06-24" @default.
- W2117084652 creator A5034151855 @default.
- W2117084652 creator A5082743420 @default.
- W2117084652 date "2004-12-01" @default.
- W2117084652 modified "2023-09-27" @default.
- W2117084652 title "Fast Approximate Search in Large Dictionaries" @default.
- W2117084652 cites W1969698078 @default.
- W2117084652 cites W1970026646 @default.
- W2117084652 cites W1997204547 @default.
- W2117084652 cites W1999378673 @default.
- W2117084652 cites W2001496424 @default.
- W2117084652 cites W2010595692 @default.
- W2117084652 cites W2011632873 @default.
- W2117084652 cites W2012659300 @default.
- W2117084652 cites W2016219933 @default.
- W2117084652 cites W2019363722 @default.
- W2117084652 cites W2020035298 @default.
- W2117084652 cites W2020103094 @default.
- W2117084652 cites W2023358833 @default.
- W2117084652 cites W2023843553 @default.
- W2117084652 cites W2040102554 @default.
- W2117084652 cites W2041486018 @default.
- W2117084652 cites W2042850423 @default.
- W2117084652 cites W2043481183 @default.
- W2117084652 cites W2045821558 @default.
- W2117084652 cites W2055846397 @default.
- W2117084652 cites W2062235741 @default.
- W2117084652 cites W2065546971 @default.
- W2117084652 cites W2066102695 @default.
- W2117084652 cites W2074064717 @default.
- W2117084652 cites W2093537029 @default.
- W2117084652 cites W2110314280 @default.
- W2117084652 cites W2154478838 @default.
- W2117084652 cites W2165156013 @default.
- W2117084652 cites W2168459716 @default.
- W2117084652 cites W27881537 @default.
- W2117084652 doi "https://doi.org/10.1162/0891201042544938" @default.
- W2117084652 hasPublicationYear "2004" @default.
- W2117084652 type Work @default.
- W2117084652 sameAs 2117084652 @default.
- W2117084652 citedByCount "64" @default.
- W2117084652 countsByYear W21170846522012 @default.
- W2117084652 countsByYear W21170846522013 @default.
- W2117084652 countsByYear W21170846522014 @default.
- W2117084652 countsByYear W21170846522015 @default.
- W2117084652 countsByYear W21170846522016 @default.
- W2117084652 countsByYear W21170846522017 @default.
- W2117084652 countsByYear W21170846522018 @default.
- W2117084652 countsByYear W21170846522019 @default.
- W2117084652 countsByYear W21170846522020 @default.
- W2117084652 countsByYear W21170846522021 @default.
- W2117084652 crossrefType "journal-article" @default.
- W2117084652 hasAuthorship W2117084652A5034151855 @default.
- W2117084652 hasAuthorship W2117084652A5082743420 @default.
- W2117084652 hasBestOaLocation W21170846521 @default.
- W2117084652 hasConcept C11413529 @default.
- W2117084652 hasConcept C154945302 @default.
- W2117084652 hasConcept C177264268 @default.
- W2117084652 hasConcept C199360897 @default.
- W2117084652 hasConcept C202444582 @default.
- W2117084652 hasConcept C2524010 @default.
- W2117084652 hasConcept C2777515626 @default.
- W2117084652 hasConcept C28719098 @default.
- W2117084652 hasConcept C33923547 @default.
- W2117084652 hasConcept C41008148 @default.
- W2117084652 hasConcept C44359876 @default.
- W2117084652 hasConcept C80444323 @default.
- W2117084652 hasConcept C9652623 @default.
- W2117084652 hasConceptScore W2117084652C11413529 @default.
- W2117084652 hasConceptScore W2117084652C154945302 @default.
- W2117084652 hasConceptScore W2117084652C177264268 @default.
- W2117084652 hasConceptScore W2117084652C199360897 @default.
- W2117084652 hasConceptScore W2117084652C202444582 @default.
- W2117084652 hasConceptScore W2117084652C2524010 @default.
- W2117084652 hasConceptScore W2117084652C2777515626 @default.
- W2117084652 hasConceptScore W2117084652C28719098 @default.
- W2117084652 hasConceptScore W2117084652C33923547 @default.
- W2117084652 hasConceptScore W2117084652C41008148 @default.
- W2117084652 hasConceptScore W2117084652C44359876 @default.
- W2117084652 hasConceptScore W2117084652C80444323 @default.
- W2117084652 hasConceptScore W2117084652C9652623 @default.
- W2117084652 hasIssue "4" @default.
- W2117084652 hasLocation W21170846521 @default.
- W2117084652 hasLocation W21170846522 @default.
- W2117084652 hasOpenAccess W2117084652 @default.
- W2117084652 hasPrimaryLocation W21170846521 @default.
- W2117084652 hasRelatedWork W1988034291 @default.
- W2117084652 hasRelatedWork W2058416991 @default.
- W2117084652 hasRelatedWork W2117084652 @default.
- W2117084652 hasRelatedWork W2384380565 @default.
- W2117084652 hasRelatedWork W2389348543 @default.
- W2117084652 hasRelatedWork W2484545025 @default.
- W2117084652 hasRelatedWork W2807937018 @default.
- W2117084652 hasRelatedWork W2900772149 @default.
- W2117084652 hasRelatedWork W4313040557 @default.
- W2117084652 hasRelatedWork W2482057383 @default.
- W2117084652 hasVolume "30" @default.