Matches in SemOpenAlex for { <https://semopenalex.org/work/W2117093313> ?p ?o ?g. }
- W2117093313 endingPage "151" @default.
- W2117093313 startingPage "119" @default.
- W2117093313 abstract "In this article, we study a queue fed by a large number n of independent discrete-time Gaussian processes with stationary increments. We consider the many-sources asymptotic regime, that is, the buffer-exceedance threshold B and the service capacity C are scaled by the number of sources ( B ≡ nb and C ≡ nc ).We discuss four methods for simulating the steady-state probability that the buffer threshold is exceeded: the single-twist method (suggested by large deviation theory), the cut-and-twist method (simulating timeslot by timeslot), the random-twist method (the twist is sampled from a discrete distribution), and the sequential-twist method (simulating source by source).The asymptotic efficiency of these four methods is analytically investigated for n → ∞. A necessary and sufficient condition is derived for the efficiency of the single-twist method, indicating that it is nearly always asymptotically inefficient. The other three methods, however, are asymptotically efficient. We numerically evaluate the four methods by performing a detailed simulation study where it is our main objective to compare the three efficient methods in practical situations." @default.
- W2117093313 created "2016-06-24" @default.
- W2117093313 creator A5033142925 @default.
- W2117093313 creator A5069071519 @default.
- W2117093313 date "2006-04-01" @default.
- W2117093313 modified "2023-10-14" @default.
- W2117093313 title "Fast simulation of overflow probabilities in a queue with Gaussian input" @default.
- W2117093313 cites W1488294032 @default.
- W2117093313 cites W1596404946 @default.
- W2117093313 cites W1967071544 @default.
- W2117093313 cites W1977691343 @default.
- W2117093313 cites W1978061253 @default.
- W2117093313 cites W1979498038 @default.
- W2117093313 cites W1989703696 @default.
- W2117093313 cites W1991873304 @default.
- W2117093313 cites W2000521974 @default.
- W2117093313 cites W2024309638 @default.
- W2117093313 cites W2037945753 @default.
- W2117093313 cites W2046812875 @default.
- W2117093313 cites W2051155093 @default.
- W2117093313 cites W2061071876 @default.
- W2117093313 cites W2079559649 @default.
- W2117093313 cites W2080328084 @default.
- W2117093313 cites W2090565718 @default.
- W2117093313 cites W2100757903 @default.
- W2117093313 cites W2105818147 @default.
- W2117093313 cites W2108679409 @default.
- W2117093313 cites W2109380050 @default.
- W2117093313 cites W2111591614 @default.
- W2117093313 cites W2111976694 @default.
- W2117093313 cites W2146416787 @default.
- W2117093313 cites W2149091841 @default.
- W2117093313 cites W2162501664 @default.
- W2117093313 cites W4236669580 @default.
- W2117093313 cites W4246293990 @default.
- W2117093313 cites W4256363058 @default.
- W2117093313 cites W4256465461 @default.
- W2117093313 cites W4301258660 @default.
- W2117093313 doi "https://doi.org/10.1145/1138464.1138466" @default.
- W2117093313 hasPublicationYear "2006" @default.
- W2117093313 type Work @default.
- W2117093313 sameAs 2117093313 @default.
- W2117093313 citedByCount "20" @default.
- W2117093313 countsByYear W21170933132015 @default.
- W2117093313 countsByYear W21170933132018 @default.
- W2117093313 countsByYear W21170933132020 @default.
- W2117093313 countsByYear W21170933132021 @default.
- W2117093313 countsByYear W21170933132022 @default.
- W2117093313 countsByYear W21170933132023 @default.
- W2117093313 crossrefType "journal-article" @default.
- W2117093313 hasAuthorship W2117093313A5033142925 @default.
- W2117093313 hasAuthorship W2117093313A5069071519 @default.
- W2117093313 hasBestOaLocation W21170933132 @default.
- W2117093313 hasConcept C105795698 @default.
- W2117093313 hasConcept C121332964 @default.
- W2117093313 hasConcept C121864883 @default.
- W2117093313 hasConcept C126255220 @default.
- W2117093313 hasConcept C160403385 @default.
- W2117093313 hasConcept C163716315 @default.
- W2117093313 hasConcept C181789720 @default.
- W2117093313 hasConcept C199360897 @default.
- W2117093313 hasConcept C2524010 @default.
- W2117093313 hasConcept C2776196297 @default.
- W2117093313 hasConcept C28826006 @default.
- W2117093313 hasConcept C33923547 @default.
- W2117093313 hasConcept C41008148 @default.
- W2117093313 hasConcept C62520636 @default.
- W2117093313 hasConcept C75438885 @default.
- W2117093313 hasConceptScore W2117093313C105795698 @default.
- W2117093313 hasConceptScore W2117093313C121332964 @default.
- W2117093313 hasConceptScore W2117093313C121864883 @default.
- W2117093313 hasConceptScore W2117093313C126255220 @default.
- W2117093313 hasConceptScore W2117093313C160403385 @default.
- W2117093313 hasConceptScore W2117093313C163716315 @default.
- W2117093313 hasConceptScore W2117093313C181789720 @default.
- W2117093313 hasConceptScore W2117093313C199360897 @default.
- W2117093313 hasConceptScore W2117093313C2524010 @default.
- W2117093313 hasConceptScore W2117093313C2776196297 @default.
- W2117093313 hasConceptScore W2117093313C28826006 @default.
- W2117093313 hasConceptScore W2117093313C33923547 @default.
- W2117093313 hasConceptScore W2117093313C41008148 @default.
- W2117093313 hasConceptScore W2117093313C62520636 @default.
- W2117093313 hasConceptScore W2117093313C75438885 @default.
- W2117093313 hasIssue "2" @default.
- W2117093313 hasLocation W21170933131 @default.
- W2117093313 hasLocation W21170933132 @default.
- W2117093313 hasLocation W21170933133 @default.
- W2117093313 hasOpenAccess W2117093313 @default.
- W2117093313 hasPrimaryLocation W21170933131 @default.
- W2117093313 hasRelatedWork W1989703696 @default.
- W2117093313 hasRelatedWork W2076047904 @default.
- W2117093313 hasRelatedWork W2136809508 @default.
- W2117093313 hasRelatedWork W2151656878 @default.
- W2117093313 hasRelatedWork W2804716603 @default.
- W2117093313 hasRelatedWork W2963954174 @default.
- W2117093313 hasRelatedWork W3007536079 @default.
- W2117093313 hasRelatedWork W3105855952 @default.
- W2117093313 hasRelatedWork W4298326124 @default.