Matches in SemOpenAlex for { <https://semopenalex.org/work/W2117145633> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2117145633 abstract "Monte Carlo algorithms are commonly used to identify a set of models for Bayesian model selection or model averaging. Because empirical frequencies of models are often zero or one in high-dimensional problems, posterior probabilities calculated from the observed marginal likelihoods, renormalized over the sampled models, are often employed. Such estimates are the only recourse in several newer stochastic search algorithms. In this paper, we prove that renormalization of posterior probabilities over the set of sampled models generally leads to bias that may dominate mean squared error. Viewing the model space as a finite population, we propose a new estimator based on a ratio of Horvitz--Thompson estimators that incorporates observed marginal likelihoods, but is approximately unbiased. This is shown to lead to a reduction in mean squared error compared to the empirical or renormalized estimators, with little increase in computational cost. Copyright 2012, Oxford University Press." @default.
- W2117145633 created "2016-06-24" @default.
- W2117145633 creator A5007334362 @default.
- W2117145633 creator A5041107680 @default.
- W2117145633 date "2012-09-30" @default.
- W2117145633 modified "2023-09-23" @default.
- W2117145633 title "Finite population estimators in stochastic search variable selection" @default.
- W2117145633 cites W1603903339 @default.
- W2117145633 cites W1980869687 @default.
- W2117145633 cites W2015226626 @default.
- W2117145633 cites W2019491306 @default.
- W2117145633 cites W2024622153 @default.
- W2117145633 cites W2033149996 @default.
- W2117145633 cites W2037571747 @default.
- W2117145633 cites W2037888022 @default.
- W2117145633 cites W2057331441 @default.
- W2117145633 cites W2094509095 @default.
- W2117145633 cites W2099170797 @default.
- W2117145633 cites W4233471163 @default.
- W2117145633 cites W4250518393 @default.
- W2117145633 cites W2045381005 @default.
- W2117145633 doi "https://doi.org/10.1093/biomet/ass040" @default.
- W2117145633 hasPublicationYear "2012" @default.
- W2117145633 type Work @default.
- W2117145633 sameAs 2117145633 @default.
- W2117145633 citedByCount "4" @default.
- W2117145633 countsByYear W21171456332015 @default.
- W2117145633 countsByYear W21171456332016 @default.
- W2117145633 countsByYear W21171456332021 @default.
- W2117145633 countsByYear W21171456332022 @default.
- W2117145633 crossrefType "journal-article" @default.
- W2117145633 hasAuthorship W2117145633A5007334362 @default.
- W2117145633 hasAuthorship W2117145633A5041107680 @default.
- W2117145633 hasBestOaLocation W21171456332 @default.
- W2117145633 hasConcept C105795698 @default.
- W2117145633 hasConcept C107673813 @default.
- W2117145633 hasConcept C139945424 @default.
- W2117145633 hasConcept C144024400 @default.
- W2117145633 hasConcept C149923435 @default.
- W2117145633 hasConcept C185429906 @default.
- W2117145633 hasConcept C28826006 @default.
- W2117145633 hasConcept C2908647359 @default.
- W2117145633 hasConcept C33923547 @default.
- W2117145633 hasConcept C93959086 @default.
- W2117145633 hasConceptScore W2117145633C105795698 @default.
- W2117145633 hasConceptScore W2117145633C107673813 @default.
- W2117145633 hasConceptScore W2117145633C139945424 @default.
- W2117145633 hasConceptScore W2117145633C144024400 @default.
- W2117145633 hasConceptScore W2117145633C149923435 @default.
- W2117145633 hasConceptScore W2117145633C185429906 @default.
- W2117145633 hasConceptScore W2117145633C28826006 @default.
- W2117145633 hasConceptScore W2117145633C2908647359 @default.
- W2117145633 hasConceptScore W2117145633C33923547 @default.
- W2117145633 hasConceptScore W2117145633C93959086 @default.
- W2117145633 hasLocation W21171456331 @default.
- W2117145633 hasLocation W21171456332 @default.
- W2117145633 hasOpenAccess W2117145633 @default.
- W2117145633 hasPrimaryLocation W21171456331 @default.
- W2117145633 hasRelatedWork W1986491605 @default.
- W2117145633 hasRelatedWork W1994749633 @default.
- W2117145633 hasRelatedWork W1996815409 @default.
- W2117145633 hasRelatedWork W1997361079 @default.
- W2117145633 hasRelatedWork W2010849106 @default.
- W2117145633 hasRelatedWork W2011187722 @default.
- W2117145633 hasRelatedWork W2014473431 @default.
- W2117145633 hasRelatedWork W2021796032 @default.
- W2117145633 hasRelatedWork W2054888241 @default.
- W2117145633 hasRelatedWork W2058692753 @default.
- W2117145633 hasRelatedWork W2082182397 @default.
- W2117145633 hasRelatedWork W2092600395 @default.
- W2117145633 hasRelatedWork W2105085235 @default.
- W2117145633 hasRelatedWork W2137196389 @default.
- W2117145633 hasRelatedWork W2142391237 @default.
- W2117145633 hasRelatedWork W2215690741 @default.
- W2117145633 hasRelatedWork W2302190325 @default.
- W2117145633 hasRelatedWork W2962945425 @default.
- W2117145633 hasRelatedWork W3047007589 @default.
- W2117145633 hasRelatedWork W3164715132 @default.
- W2117145633 isParatext "false" @default.
- W2117145633 isRetracted "false" @default.
- W2117145633 magId "2117145633" @default.
- W2117145633 workType "article" @default.