Matches in SemOpenAlex for { <https://semopenalex.org/work/W2117172783> ?p ?o ?g. }
- W2117172783 abstract "Fatigue lives of rolling element bearings exhibit a wide scatter due to the statistical nature of the mechanisms responsible for the bearing failure process. Life models that account for this dispersion are empirical in nature and do not provide insights into the physical mechanisms that lead to this scatter. One of the primary reasons for dispersion in lives is the inhomogeneous nature of the bearing material. Here, a new approach based on a discrete material representation is presented that simulates this inherent material randomness. In this investigation, two levels of randomness are considered: (1) the topological randomness due to geometric variability in the material microstructure and (2) the material property randomness due to nonuniform distribution of properties throughout the material. The effect of these variations on the subsurface stress field in Hertzian line contacts is studied. Fatigue life is formulated as a function of a critical stress quantity and its corresponding depth, following a similar approach to the Lundberg–Palmgren theory. However, instead of explicitly assuming a Weibull distribution of fatigue lives, the life distribution is obtained as an outcome of numerical simulations. A new critical stress quantity is introduced that considers shear stress acting along internal material planes of weakness. It is found that there is a scatter in the magnitude as well as depth of occurrence of this critical stress quantity, which leads to a scatter in computed fatigue lives. Further, the range of depths within which the critical stress quantity occurs is found to be consistent with experimental observations of fatigue cracks. The life distributions obtained from the numerical simulations are found to follow a two-parameter Weibull distribution closely. The L10 life and the Weibull slope decrease when a nonuniform distribution of elastic modulus is assumed throughout the material. The introduction of internal flaws in the material significantly reduces the L10 life and the Weibull slope. However, it is found that the Weibull slope reaches a limiting value beyond a certain concentration of flaws. This limiting value is close to that predicted by the Lundberg–Palmgren theory. Weibull slopes obtained through the numerical simulations range from 1.29 to 3.36 and are within experimentally observed values for bearing steels." @default.
- W2117172783 created "2016-06-24" @default.
- W2117172783 creator A5005352306 @default.
- W2117172783 creator A5015569884 @default.
- W2117172783 creator A5054105659 @default.
- W2117172783 creator A5076960542 @default.
- W2117172783 date "2007-12-26" @default.
- W2117172783 modified "2023-10-03" @default.
- W2117172783 title "A Numerical Model for Life Scatter in Rolling Element Bearings" @default.
- W2117172783 cites W179372779 @default.
- W2117172783 cites W1971465634 @default.
- W2117172783 cites W1975657490 @default.
- W2117172783 cites W1981275962 @default.
- W2117172783 cites W1992313513 @default.
- W2117172783 cites W2004101748 @default.
- W2117172783 cites W2011247473 @default.
- W2117172783 cites W2024454295 @default.
- W2117172783 cites W2026401158 @default.
- W2117172783 cites W2054740049 @default.
- W2117172783 cites W2063623894 @default.
- W2117172783 cites W2063905024 @default.
- W2117172783 cites W2074148881 @default.
- W2117172783 cites W2080842725 @default.
- W2117172783 cites W2091106590 @default.
- W2117172783 cites W2118065981 @default.
- W2117172783 cites W2911302472 @default.
- W2117172783 cites W4249414893 @default.
- W2117172783 doi "https://doi.org/10.1115/1.2806163" @default.
- W2117172783 hasPublicationYear "2007" @default.
- W2117172783 type Work @default.
- W2117172783 sameAs 2117172783 @default.
- W2117172783 citedByCount "41" @default.
- W2117172783 countsByYear W21171727832014 @default.
- W2117172783 countsByYear W21171727832015 @default.
- W2117172783 countsByYear W21171727832016 @default.
- W2117172783 countsByYear W21171727832017 @default.
- W2117172783 countsByYear W21171727832018 @default.
- W2117172783 countsByYear W21171727832019 @default.
- W2117172783 countsByYear W21171727832020 @default.
- W2117172783 countsByYear W21171727832021 @default.
- W2117172783 countsByYear W21171727832022 @default.
- W2117172783 countsByYear W21171727832023 @default.
- W2117172783 crossrefType "journal-article" @default.
- W2117172783 hasAuthorship W2117172783A5005352306 @default.
- W2117172783 hasAuthorship W2117172783A5015569884 @default.
- W2117172783 hasAuthorship W2117172783A5054105659 @default.
- W2117172783 hasAuthorship W2117172783A5076960542 @default.
- W2117172783 hasConcept C105795698 @default.
- W2117172783 hasConcept C120665830 @default.
- W2117172783 hasConcept C121332964 @default.
- W2117172783 hasConcept C121864883 @default.
- W2117172783 hasConcept C125112378 @default.
- W2117172783 hasConcept C127413603 @default.
- W2117172783 hasConcept C1276947 @default.
- W2117172783 hasConcept C135628077 @default.
- W2117172783 hasConcept C138885662 @default.
- W2117172783 hasConcept C159985019 @default.
- W2117172783 hasConcept C173291955 @default.
- W2117172783 hasConcept C177562468 @default.
- W2117172783 hasConcept C192562407 @default.
- W2117172783 hasConcept C199978012 @default.
- W2117172783 hasConcept C21036866 @default.
- W2117172783 hasConcept C2778414698 @default.
- W2117172783 hasConcept C31555180 @default.
- W2117172783 hasConcept C33923547 @default.
- W2117172783 hasConcept C41895202 @default.
- W2117172783 hasConcept C57879066 @default.
- W2117172783 hasConcept C66938386 @default.
- W2117172783 hasConceptScore W2117172783C105795698 @default.
- W2117172783 hasConceptScore W2117172783C120665830 @default.
- W2117172783 hasConceptScore W2117172783C121332964 @default.
- W2117172783 hasConceptScore W2117172783C121864883 @default.
- W2117172783 hasConceptScore W2117172783C125112378 @default.
- W2117172783 hasConceptScore W2117172783C127413603 @default.
- W2117172783 hasConceptScore W2117172783C1276947 @default.
- W2117172783 hasConceptScore W2117172783C135628077 @default.
- W2117172783 hasConceptScore W2117172783C138885662 @default.
- W2117172783 hasConceptScore W2117172783C159985019 @default.
- W2117172783 hasConceptScore W2117172783C173291955 @default.
- W2117172783 hasConceptScore W2117172783C177562468 @default.
- W2117172783 hasConceptScore W2117172783C192562407 @default.
- W2117172783 hasConceptScore W2117172783C199978012 @default.
- W2117172783 hasConceptScore W2117172783C21036866 @default.
- W2117172783 hasConceptScore W2117172783C2778414698 @default.
- W2117172783 hasConceptScore W2117172783C31555180 @default.
- W2117172783 hasConceptScore W2117172783C33923547 @default.
- W2117172783 hasConceptScore W2117172783C41895202 @default.
- W2117172783 hasConceptScore W2117172783C57879066 @default.
- W2117172783 hasConceptScore W2117172783C66938386 @default.
- W2117172783 hasIssue "1" @default.
- W2117172783 hasLocation W21171727831 @default.
- W2117172783 hasOpenAccess W2117172783 @default.
- W2117172783 hasPrimaryLocation W21171727831 @default.
- W2117172783 hasRelatedWork W1980044741 @default.
- W2117172783 hasRelatedWork W1995202398 @default.
- W2117172783 hasRelatedWork W2047304409 @default.
- W2117172783 hasRelatedWork W2357131584 @default.
- W2117172783 hasRelatedWork W2373695431 @default.
- W2117172783 hasRelatedWork W2380322444 @default.
- W2117172783 hasRelatedWork W2391503631 @default.