Matches in SemOpenAlex for { <https://semopenalex.org/work/W2117284974> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2117284974 abstract "The State Railway of Thailand provides passengers with train location information on their Web site, which includes the name of the last station that each train arrives at or departs from, along with the timestamps and the accumulative train delay (in minutes) from the train timetable. This information allows passengers to intuitively predict the arrival time at their station by adding the last known train delay to the scheduled arrival time. This paper aims at providing a more accurate prediction of passenger train's arrival times using the historical travel times between train stations. Two algorithms that use train location information and historical travel times are proposed and evaluated. The first algorithm uses the moving average of historical travel times. The second algorithm utilizes the travel times of the k-nearest neighbors (k-NN) of the last known arrival time. To evaluate the proposed algorithms, we collected six months of data for three different trains and calculated prediction errors using mean absolute error (MAE). The prediction errors of the proposed algorithms are compared to the prediction errors of the baseline algorithm that predicts the arrival time by adding the last known train delay to the scheduled train arrival time. Both algorithms outperform the baseline prediction. The algorithm based on moving average travel time improves the prediction error by 22.9 percent on average, and the algorithm based on k-NN improves the prediction error by 23.0 percent on average (k=16)." @default.
- W2117284974 created "2016-06-24" @default.
- W2117284974 creator A5026790488 @default.
- W2117284974 creator A5043996766 @default.
- W2117284974 creator A5071103512 @default.
- W2117284974 creator A5090806480 @default.
- W2117284974 date "2014-05-01" @default.
- W2117284974 modified "2023-10-17" @default.
- W2117284974 title "Improving arrival time prediction of Thailand's passenger trains using historical travel times" @default.
- W2117284974 cites W1984256469 @default.
- W2117284974 cites W2051378013 @default.
- W2117284974 cites W2091439727 @default.
- W2117284974 cites W2148714761 @default.
- W2117284974 doi "https://doi.org/10.1109/jcsse.2014.6841886" @default.
- W2117284974 hasPublicationYear "2014" @default.
- W2117284974 type Work @default.
- W2117284974 sameAs 2117284974 @default.
- W2117284974 citedByCount "12" @default.
- W2117284974 countsByYear W21172849742016 @default.
- W2117284974 countsByYear W21172849742017 @default.
- W2117284974 countsByYear W21172849742018 @default.
- W2117284974 countsByYear W21172849742019 @default.
- W2117284974 countsByYear W21172849742020 @default.
- W2117284974 countsByYear W21172849742021 @default.
- W2117284974 countsByYear W21172849742022 @default.
- W2117284974 countsByYear W21172849742023 @default.
- W2117284974 crossrefType "proceedings-article" @default.
- W2117284974 hasAuthorship W2117284974A5026790488 @default.
- W2117284974 hasAuthorship W2117284974A5043996766 @default.
- W2117284974 hasAuthorship W2117284974A5071103512 @default.
- W2117284974 hasAuthorship W2117284974A5090806480 @default.
- W2117284974 hasConcept C111368507 @default.
- W2117284974 hasConcept C113954288 @default.
- W2117284974 hasConcept C11413529 @default.
- W2117284974 hasConcept C127162648 @default.
- W2117284974 hasConcept C12725497 @default.
- W2117284974 hasConcept C127313418 @default.
- W2117284974 hasConcept C127413603 @default.
- W2117284974 hasConcept C163150518 @default.
- W2117284974 hasConcept C190839683 @default.
- W2117284974 hasConcept C205649164 @default.
- W2117284974 hasConcept C22212356 @default.
- W2117284974 hasConcept C2985733770 @default.
- W2117284974 hasConcept C3017552255 @default.
- W2117284974 hasConcept C41008148 @default.
- W2117284974 hasConcept C58640448 @default.
- W2117284974 hasConcept C76155785 @default.
- W2117284974 hasConcept C79403827 @default.
- W2117284974 hasConceptScore W2117284974C111368507 @default.
- W2117284974 hasConceptScore W2117284974C113954288 @default.
- W2117284974 hasConceptScore W2117284974C11413529 @default.
- W2117284974 hasConceptScore W2117284974C127162648 @default.
- W2117284974 hasConceptScore W2117284974C12725497 @default.
- W2117284974 hasConceptScore W2117284974C127313418 @default.
- W2117284974 hasConceptScore W2117284974C127413603 @default.
- W2117284974 hasConceptScore W2117284974C163150518 @default.
- W2117284974 hasConceptScore W2117284974C190839683 @default.
- W2117284974 hasConceptScore W2117284974C205649164 @default.
- W2117284974 hasConceptScore W2117284974C22212356 @default.
- W2117284974 hasConceptScore W2117284974C2985733770 @default.
- W2117284974 hasConceptScore W2117284974C3017552255 @default.
- W2117284974 hasConceptScore W2117284974C41008148 @default.
- W2117284974 hasConceptScore W2117284974C58640448 @default.
- W2117284974 hasConceptScore W2117284974C76155785 @default.
- W2117284974 hasConceptScore W2117284974C79403827 @default.
- W2117284974 hasLocation W21172849741 @default.
- W2117284974 hasOpenAccess W2117284974 @default.
- W2117284974 hasPrimaryLocation W21172849741 @default.
- W2117284974 hasRelatedWork W2014046727 @default.
- W2117284974 hasRelatedWork W2018919777 @default.
- W2117284974 hasRelatedWork W2023252653 @default.
- W2117284974 hasRelatedWork W2130964724 @default.
- W2117284974 hasRelatedWork W2314116683 @default.
- W2117284974 hasRelatedWork W2390190242 @default.
- W2117284974 hasRelatedWork W2507927145 @default.
- W2117284974 hasRelatedWork W2733511103 @default.
- W2117284974 hasRelatedWork W2784128073 @default.
- W2117284974 hasRelatedWork W3216563003 @default.
- W2117284974 isParatext "false" @default.
- W2117284974 isRetracted "false" @default.
- W2117284974 magId "2117284974" @default.
- W2117284974 workType "article" @default.