Matches in SemOpenAlex for { <https://semopenalex.org/work/W2117327483> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W2117327483 endingPage "62" @default.
- W2117327483 startingPage "53" @default.
- W2117327483 abstract "Monitoring the aircraft engine fuel flow is critical to the flight safety and the aircraft maintenance economy. Aim at predicting the aircraft engine fuel flow accurately and quickly, an aircraft engine fuel flow prediction method based on the process neural network is proposed in this paper. The learning speed of the existing learning algorithms (e.g. BP learning algorithm) for process neural network is too slow for the practical application. A Levenberg-Marquardt learning algorithm based on the expansion of the orthogonal basis functions is developed to raise the adaptability of the process neural network to the real problems. Finally, the proposed prediction method with the corresponding learning algorithm is utilized to predict the fuel flow of some aircraft engine, the results indicate that the proposed prediction method seems to perform well and appears suitable for using as an aircraft engine health condition monitoring tool, and the comparative results also indicate that the Levenberg-Marquardt learning algorithm has a faster learning convergence speed and a higher prediction accuracy than the BP learning algorithm." @default.
- W2117327483 created "2016-06-24" @default.
- W2117327483 creator A5015860750 @default.
- W2117327483 creator A5042085305 @default.
- W2117327483 creator A5049372794 @default.
- W2117327483 creator A5073292294 @default.
- W2117327483 creator A5084199738 @default.
- W2117327483 date "2014-03-31" @default.
- W2117327483 modified "2023-10-14" @default.
- W2117327483 title "Aircraft Engine Fuel Flow Prediction Using Process Neural Network" @default.
- W2117327483 cites W28275819 @default.
- W2117327483 doi "https://doi.org/10.14257/ijca.2014.7.3.06" @default.
- W2117327483 hasPublicationYear "2014" @default.
- W2117327483 type Work @default.
- W2117327483 sameAs 2117327483 @default.
- W2117327483 citedByCount "5" @default.
- W2117327483 countsByYear W21173274832016 @default.
- W2117327483 countsByYear W21173274832018 @default.
- W2117327483 crossrefType "journal-article" @default.
- W2117327483 hasAuthorship W2117327483A5015860750 @default.
- W2117327483 hasAuthorship W2117327483A5042085305 @default.
- W2117327483 hasAuthorship W2117327483A5049372794 @default.
- W2117327483 hasAuthorship W2117327483A5073292294 @default.
- W2117327483 hasAuthorship W2117327483A5084199738 @default.
- W2117327483 hasBestOaLocation W21173274831 @default.
- W2117327483 hasConcept C111919701 @default.
- W2117327483 hasConcept C121332964 @default.
- W2117327483 hasConcept C127413603 @default.
- W2117327483 hasConcept C154945302 @default.
- W2117327483 hasConcept C171146098 @default.
- W2117327483 hasConcept C38349280 @default.
- W2117327483 hasConcept C41008148 @default.
- W2117327483 hasConcept C50644808 @default.
- W2117327483 hasConcept C57879066 @default.
- W2117327483 hasConcept C98045186 @default.
- W2117327483 hasConceptScore W2117327483C111919701 @default.
- W2117327483 hasConceptScore W2117327483C121332964 @default.
- W2117327483 hasConceptScore W2117327483C127413603 @default.
- W2117327483 hasConceptScore W2117327483C154945302 @default.
- W2117327483 hasConceptScore W2117327483C171146098 @default.
- W2117327483 hasConceptScore W2117327483C38349280 @default.
- W2117327483 hasConceptScore W2117327483C41008148 @default.
- W2117327483 hasConceptScore W2117327483C50644808 @default.
- W2117327483 hasConceptScore W2117327483C57879066 @default.
- W2117327483 hasConceptScore W2117327483C98045186 @default.
- W2117327483 hasIssue "3" @default.
- W2117327483 hasLocation W21173274831 @default.
- W2117327483 hasOpenAccess W2117327483 @default.
- W2117327483 hasPrimaryLocation W21173274831 @default.
- W2117327483 hasRelatedWork W1806372183 @default.
- W2117327483 hasRelatedWork W1987569955 @default.
- W2117327483 hasRelatedWork W2029412421 @default.
- W2117327483 hasRelatedWork W2085580665 @default.
- W2117327483 hasRelatedWork W2370652759 @default.
- W2117327483 hasRelatedWork W2386387936 @default.
- W2117327483 hasRelatedWork W2435007635 @default.
- W2117327483 hasRelatedWork W3003630481 @default.
- W2117327483 hasRelatedWork W4304136584 @default.
- W2117327483 hasRelatedWork W831794578 @default.
- W2117327483 hasVolume "7" @default.
- W2117327483 isParatext "false" @default.
- W2117327483 isRetracted "false" @default.
- W2117327483 magId "2117327483" @default.
- W2117327483 workType "article" @default.