Matches in SemOpenAlex for { <https://semopenalex.org/work/W2117434626> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2117434626 endingPage "212" @default.
- W2117434626 startingPage "196" @default.
- W2117434626 abstract "Facial expression recognition is an important part in emotional interaction between human and machine. This paper proposes a facial expression recognition approach based on multi-classifier fusion with stacking algorithm. The kappa-error diagram is employed in base-level classifiers selection, which gains insights about which individual classifier has the better recognition performance and how diverse among them to help improve the recognition accuracy rate by fusing the complementary functions. In order to avoid the influence of the chance factor caused by guessing in algorithm evaluation and get more reliable awareness of algorithm performance, kappa and informedness besides accuracy are utilized as measure criteria in the comparison experiments. To verify the effectiveness of our approach, two public databases are used in the experiments. The experiment results show that compared with individual classifier and two other typical ensemble methods, our proposed stacked ensemble system does recognize facial expression more accurately with less standard deviation. It overcomes the individual classifier’s bias and achieves more reliable recognition results." @default.
- W2117434626 created "2016-06-24" @default.
- W2117434626 creator A5010386822 @default.
- W2117434626 creator A5035085963 @default.
- W2117434626 creator A5040243164 @default.
- W2117434626 creator A5085737719 @default.
- W2117434626 date "2014-01-29" @default.
- W2117434626 modified "2023-10-16" @default.
- W2117434626 title "Multi-classifier Fusion Based Facial Expression Recognition Approach" @default.
- W2117434626 cites W1562197959 @default.
- W2117434626 cites W1582036668 @default.
- W2117434626 cites W1949619756 @default.
- W2117434626 cites W1992384122 @default.
- W2117434626 cites W2003238582 @default.
- W2117434626 cites W2006202847 @default.
- W2117434626 cites W2006431213 @default.
- W2117434626 cites W2011300003 @default.
- W2117434626 cites W2053154970 @default.
- W2117434626 cites W2066332159 @default.
- W2117434626 cites W2088575594 @default.
- W2117434626 cites W2102570318 @default.
- W2117434626 cites W2108113956 @default.
- W2117434626 cites W2129150631 @default.
- W2117434626 cites W2134477702 @default.
- W2117434626 cites W2145310492 @default.
- W2117434626 cites W2146780613 @default.
- W2117434626 cites W2151973236 @default.
- W2117434626 cites W2154716422 @default.
- W2117434626 cites W2158275940 @default.
- W2117434626 cites W2164641162 @default.
- W2117434626 cites W2165183780 @default.
- W2117434626 cites W2170264031 @default.
- W2117434626 cites W2172197449 @default.
- W2117434626 cites W2262035661 @default.
- W2117434626 cites W28412257 @default.
- W2117434626 cites W2912934387 @default.
- W2117434626 cites W46659105 @default.
- W2117434626 doi "https://doi.org/10.3837/tiis.2014.01.012" @default.
- W2117434626 hasPublicationYear "2014" @default.
- W2117434626 type Work @default.
- W2117434626 sameAs 2117434626 @default.
- W2117434626 citedByCount "10" @default.
- W2117434626 countsByYear W21174346262015 @default.
- W2117434626 countsByYear W21174346262016 @default.
- W2117434626 countsByYear W21174346262017 @default.
- W2117434626 countsByYear W21174346262018 @default.
- W2117434626 countsByYear W21174346262019 @default.
- W2117434626 countsByYear W21174346262023 @default.
- W2117434626 crossrefType "journal-article" @default.
- W2117434626 hasAuthorship W2117434626A5010386822 @default.
- W2117434626 hasAuthorship W2117434626A5035085963 @default.
- W2117434626 hasAuthorship W2117434626A5040243164 @default.
- W2117434626 hasAuthorship W2117434626A5085737719 @default.
- W2117434626 hasBestOaLocation W21174346261 @default.
- W2117434626 hasConcept C138885662 @default.
- W2117434626 hasConcept C153180895 @default.
- W2117434626 hasConcept C154945302 @default.
- W2117434626 hasConcept C158525013 @default.
- W2117434626 hasConcept C195704467 @default.
- W2117434626 hasConcept C2987714656 @default.
- W2117434626 hasConcept C31510193 @default.
- W2117434626 hasConcept C41008148 @default.
- W2117434626 hasConcept C41895202 @default.
- W2117434626 hasConcept C95623464 @default.
- W2117434626 hasConceptScore W2117434626C138885662 @default.
- W2117434626 hasConceptScore W2117434626C153180895 @default.
- W2117434626 hasConceptScore W2117434626C154945302 @default.
- W2117434626 hasConceptScore W2117434626C158525013 @default.
- W2117434626 hasConceptScore W2117434626C195704467 @default.
- W2117434626 hasConceptScore W2117434626C2987714656 @default.
- W2117434626 hasConceptScore W2117434626C31510193 @default.
- W2117434626 hasConceptScore W2117434626C41008148 @default.
- W2117434626 hasConceptScore W2117434626C41895202 @default.
- W2117434626 hasConceptScore W2117434626C95623464 @default.
- W2117434626 hasIssue "1" @default.
- W2117434626 hasLocation W21174346261 @default.
- W2117434626 hasOpenAccess W2117434626 @default.
- W2117434626 hasPrimaryLocation W21174346261 @default.
- W2117434626 hasRelatedWork W2035372623 @default.
- W2117434626 hasRelatedWork W2037083117 @default.
- W2117434626 hasRelatedWork W2167582322 @default.
- W2117434626 hasRelatedWork W2563096758 @default.
- W2117434626 hasRelatedWork W2742991909 @default.
- W2117434626 hasRelatedWork W2897887523 @default.
- W2117434626 hasRelatedWork W2972035100 @default.
- W2117434626 hasRelatedWork W3133185844 @default.
- W2117434626 hasRelatedWork W3194078543 @default.
- W2117434626 hasRelatedWork W3158004940 @default.
- W2117434626 hasVolume "8" @default.
- W2117434626 isParatext "false" @default.
- W2117434626 isRetracted "false" @default.
- W2117434626 magId "2117434626" @default.
- W2117434626 workType "article" @default.