Matches in SemOpenAlex for { <https://semopenalex.org/work/W2117471823> ?p ?o ?g. }
- W2117471823 endingPage "441" @default.
- W2117471823 startingPage "431" @default.
- W2117471823 abstract "Multi-subject datasets used in neuroimaging group studies have a complex structure, as they exhibit non-stationary statistical properties across regions and display various artifacts. While studies with small sample sizes can rarely be shown to deviate from standard hypotheses (such as the normality of the residuals) due to the poor sensitivity of normality tests with low degrees of freedom, large-scale studies (e.g. >100 subjects) exhibit more obvious deviations from these hypotheses and call for more refined models for statistical inference. Here, we demonstrate the benefits of robust regression as a tool for analyzing large neuroimaging cohorts. First, we use an analytic test based on robust parameter estimates; based on simulations, this procedure is shown to provide an accurate statistical control without resorting to permutations. Second, we show that robust regression yields more detections than standard algorithms using as an example an imaging genetics study with 392 subjects. Third, we show that robust regression can avoid false positives in a large-scale analysis of brain-behavior relationships with over 1500 subjects. Finally we embed robust regression in the Randomized Parcellation Based Inference (RPBI) method and demonstrate that this combination further improves the sensitivity of tests carried out across the whole brain. Altogether, our results show that robust procedures provide important advantages in large-scale neuroimaging group studies." @default.
- W2117471823 created "2016-06-24" @default.
- W2117471823 creator A5001775538 @default.
- W2117471823 creator A5002073624 @default.
- W2117471823 creator A5007613571 @default.
- W2117471823 creator A5008874281 @default.
- W2117471823 creator A5012556719 @default.
- W2117471823 creator A5016008616 @default.
- W2117471823 creator A5018380335 @default.
- W2117471823 creator A5026762833 @default.
- W2117471823 creator A5030737970 @default.
- W2117471823 creator A5031114437 @default.
- W2117471823 creator A5043576146 @default.
- W2117471823 creator A5052690237 @default.
- W2117471823 creator A5054548219 @default.
- W2117471823 creator A5061352061 @default.
- W2117471823 creator A5069918313 @default.
- W2117471823 creator A5074415461 @default.
- W2117471823 creator A5075640613 @default.
- W2117471823 creator A5078842273 @default.
- W2117471823 creator A5079179983 @default.
- W2117471823 creator A5084621122 @default.
- W2117471823 creator A5090364896 @default.
- W2117471823 date "2015-05-01" @default.
- W2117471823 modified "2023-10-17" @default.
- W2117471823 title "Robust regression for large-scale neuroimaging studies" @default.
- W2117471823 cites W1968553920 @default.
- W2117471823 cites W1970945578 @default.
- W2117471823 cites W1980932677 @default.
- W2117471823 cites W1981640845 @default.
- W2117471823 cites W1986948589 @default.
- W2117471823 cites W1988193785 @default.
- W2117471823 cites W1990510254 @default.
- W2117471823 cites W1993803475 @default.
- W2117471823 cites W1996309984 @default.
- W2117471823 cites W1998543533 @default.
- W2117471823 cites W1999598817 @default.
- W2117471823 cites W2001085696 @default.
- W2117471823 cites W2006591623 @default.
- W2117471823 cites W2008666452 @default.
- W2117471823 cites W2008961184 @default.
- W2117471823 cites W2009103351 @default.
- W2117471823 cites W2016381774 @default.
- W2117471823 cites W2020519533 @default.
- W2117471823 cites W2030353609 @default.
- W2117471823 cites W2032752029 @default.
- W2117471823 cites W2032983381 @default.
- W2117471823 cites W2034365297 @default.
- W2117471823 cites W2041526309 @default.
- W2117471823 cites W2042735038 @default.
- W2117471823 cites W2043045839 @default.
- W2117471823 cites W2046501560 @default.
- W2117471823 cites W2046557060 @default.
- W2117471823 cites W2048476135 @default.
- W2117471823 cites W2051691068 @default.
- W2117471823 cites W2052337396 @default.
- W2117471823 cites W2059982399 @default.
- W2117471823 cites W2066494844 @default.
- W2117471823 cites W2078524519 @default.
- W2117471823 cites W2080558881 @default.
- W2117471823 cites W2083060207 @default.
- W2117471823 cites W2083934855 @default.
- W2117471823 cites W2091278087 @default.
- W2117471823 cites W2098110443 @default.
- W2117471823 cites W2100230238 @default.
- W2117471823 cites W2101239204 @default.
- W2117471823 cites W2105617117 @default.
- W2117471823 cites W2107669723 @default.
- W2117471823 cites W2117452439 @default.
- W2117471823 cites W2132148195 @default.
- W2117471823 cites W2136157116 @default.
- W2117471823 cites W2137746168 @default.
- W2117471823 cites W2141214264 @default.
- W2117471823 cites W2144643813 @default.
- W2117471823 cites W2152701363 @default.
- W2117471823 cites W2169428430 @default.
- W2117471823 cites W2169463832 @default.
- W2117471823 cites W2171205058 @default.
- W2117471823 cites W3022211185 @default.
- W2117471823 cites W4239510810 @default.
- W2117471823 doi "https://doi.org/10.1016/j.neuroimage.2015.02.048" @default.
- W2117471823 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25731989" @default.
- W2117471823 hasPublicationYear "2015" @default.
- W2117471823 type Work @default.
- W2117471823 sameAs 2117471823 @default.
- W2117471823 citedByCount "15" @default.
- W2117471823 countsByYear W21174718232016 @default.
- W2117471823 countsByYear W21174718232017 @default.
- W2117471823 countsByYear W21174718232018 @default.
- W2117471823 countsByYear W21174718232019 @default.
- W2117471823 countsByYear W21174718232020 @default.
- W2117471823 countsByYear W21174718232021 @default.
- W2117471823 countsByYear W21174718232022 @default.
- W2117471823 crossrefType "journal-article" @default.
- W2117471823 hasAuthorship W2117471823A5001775538 @default.
- W2117471823 hasAuthorship W2117471823A5002073624 @default.
- W2117471823 hasAuthorship W2117471823A5007613571 @default.
- W2117471823 hasAuthorship W2117471823A5008874281 @default.