Matches in SemOpenAlex for { <https://semopenalex.org/work/W2117482004> ?p ?o ?g. }
- W2117482004 endingPage "359" @default.
- W2117482004 startingPage "349" @default.
- W2117482004 abstract "In this study we illustrate how the functional networks involved in a single task (e.g. the sensory, cognitive and motor components) can be segregated without cognitive subtractions at the second-level. The method used is based on meaningful variability in the patterns of activation between subjects with the assumption that regions belonging to the same network will have comparable variations from subject to subject. fMRI data were collected from thirty nine healthy volunteers who were asked to indicate with a button press if visually presented words were semantically related or not. Voxels were classified according to the similarity in their patterns of between-subject variance using a second-level unsupervised fuzzy clustering algorithm. The results were compared to those identified by cognitive subtractions of multiple conditions tested in the same set of subjects. This illustrated that the second-level clustering approach (on activation for a single task) was able to identify the functional networks observed using cognitive subtractions (e.g. those associated with vision, semantic associations or motor processing). In addition the fuzzy clustering approach revealed other networks that were not dissociated by the cognitive subtraction approach (e.g. those associated with high- and low-level visual processing and oculomotor movements). We discuss the potential applications of our method which include the identification of hidden or unpredicted networks as well as the identification of systems level signatures for different subgroupings of clinical and healthy populations." @default.
- W2117482004 created "2016-06-24" @default.
- W2117482004 creator A5022317661 @default.
- W2117482004 creator A5085284243 @default.
- W2117482004 date "2009-04-01" @default.
- W2117482004 modified "2023-09-23" @default.
- W2117482004 title "Dissociating functional brain networks by decoding the between-subject variability" @default.
- W2117482004 cites W1505061293 @default.
- W2117482004 cites W1523767002 @default.
- W2117482004 cites W1562786756 @default.
- W2117482004 cites W1970754582 @default.
- W2117482004 cites W1971931143 @default.
- W2117482004 cites W1972199530 @default.
- W2117482004 cites W1974364887 @default.
- W2117482004 cites W1974986994 @default.
- W2117482004 cites W1975440746 @default.
- W2117482004 cites W1978176329 @default.
- W2117482004 cites W1980317569 @default.
- W2117482004 cites W1981685168 @default.
- W2117482004 cites W1985803566 @default.
- W2117482004 cites W1993560519 @default.
- W2117482004 cites W2002923643 @default.
- W2117482004 cites W2005177046 @default.
- W2117482004 cites W2007308360 @default.
- W2117482004 cites W2011484875 @default.
- W2117482004 cites W2012410262 @default.
- W2117482004 cites W2012470703 @default.
- W2117482004 cites W2016444985 @default.
- W2117482004 cites W2019251003 @default.
- W2117482004 cites W2020304716 @default.
- W2117482004 cites W2021322342 @default.
- W2117482004 cites W2023117111 @default.
- W2117482004 cites W2024545575 @default.
- W2117482004 cites W2034685785 @default.
- W2117482004 cites W2038514282 @default.
- W2117482004 cites W2041342130 @default.
- W2117482004 cites W2043428207 @default.
- W2117482004 cites W2048098374 @default.
- W2117482004 cites W2051693432 @default.
- W2117482004 cites W2052946386 @default.
- W2117482004 cites W2053818746 @default.
- W2117482004 cites W2054373203 @default.
- W2117482004 cites W2058713030 @default.
- W2117482004 cites W2059564226 @default.
- W2117482004 cites W2061595586 @default.
- W2117482004 cites W2064087922 @default.
- W2117482004 cites W2066601344 @default.
- W2117482004 cites W2069481424 @default.
- W2117482004 cites W2071482304 @default.
- W2117482004 cites W2083090115 @default.
- W2117482004 cites W2088640169 @default.
- W2117482004 cites W2090193336 @default.
- W2117482004 cites W2090753992 @default.
- W2117482004 cites W2093162419 @default.
- W2117482004 cites W2097344592 @default.
- W2117482004 cites W2100927354 @default.
- W2117482004 cites W2102717406 @default.
- W2117482004 cites W2103386389 @default.
- W2117482004 cites W2104499761 @default.
- W2117482004 cites W2105033552 @default.
- W2117482004 cites W2105285178 @default.
- W2117482004 cites W2106507229 @default.
- W2117482004 cites W2107423869 @default.
- W2117482004 cites W2107627409 @default.
- W2117482004 cites W2107669723 @default.
- W2117482004 cites W2108612171 @default.
- W2117482004 cites W2111299837 @default.
- W2117482004 cites W2115077250 @default.
- W2117482004 cites W2118232570 @default.
- W2117482004 cites W2121642788 @default.
- W2117482004 cites W2121765190 @default.
- W2117482004 cites W2129006724 @default.
- W2117482004 cites W2129109788 @default.
- W2117482004 cites W2133903921 @default.
- W2117482004 cites W2134650020 @default.
- W2117482004 cites W2134677221 @default.
- W2117482004 cites W2134858198 @default.
- W2117482004 cites W2136761866 @default.
- W2117482004 cites W2142373865 @default.
- W2117482004 cites W2142869478 @default.
- W2117482004 cites W2143976150 @default.
- W2117482004 cites W2148290742 @default.
- W2117482004 cites W2154347346 @default.
- W2117482004 cites W2154930578 @default.
- W2117482004 cites W2156713097 @default.
- W2117482004 cites W2159714224 @default.
- W2117482004 cites W2162010696 @default.
- W2117482004 cites W2163201100 @default.
- W2117482004 cites W2165793012 @default.
- W2117482004 cites W2165871444 @default.
- W2117482004 cites W2166806817 @default.
- W2117482004 cites W2168834868 @default.
- W2117482004 cites W2171630967 @default.
- W2117482004 cites W2172168442 @default.
- W2117482004 cites W2178080901 @default.
- W2117482004 cites W37618770 @default.
- W2117482004 cites W4230920194 @default.
- W2117482004 cites W4235554560 @default.