Matches in SemOpenAlex for { <https://semopenalex.org/work/W2117501670> ?p ?o ?g. }
- W2117501670 abstract "Pushdown systems equip a finite state system with an unbounded stack memory, and are thus infinite state. By recording the call history on the stack, these systems provide a natural model for recursive procedure calls. Model-checking for pushdown systems has been well-studied. Tools implementing pushdown model-checking (e.g. Moped) are an essential back-end component of high-profile software model checkers such as SLAM, Blast and Terminator. Higher-order pushdown systems define a more complex memory structure: a higher-order stack is a stack of lower-order stacks. These systems form a robust hierarchy closely related to the Caucal hierarchy and higher-order recursion schemes. This latter connection demonstrates their importance as models for programs with higher-order functions. We study the global model-checking problem for (higher-order) pushdown systems. In particular, we present a new algorithm for computing the winning regions of a parity game played over an order-1 pushdown system. We then show how to compute the winning regions of two-player reachability games over order-n pushdown systems. These algorithms extend the saturation methods of Bouajjani, Esparza and Maler for order-1 pushdown systems, and Bouajjani and Meyer for higher-order pushdown systems with a single control state. These techniques begin with an automaton recognising (higher-order) stacks, and iteratively add new transitions until the automaton becomes saturated. The reachability result, presented at FoSSaCS 2007 and in the LMCS journal, is the main contribution of the thesis. We break the saturation paradigm by adding new states to the automaton during the iteration. We identify the fixed points required for termination by tracking the updates that are applied, rather than by observing the transition structure. We give a number of applications of this result to LTL model-checking, branching-time model-checking, non-emptiness of higher-order pushdown automata and Buchi games. Our second major contribution is the first application of the saturation technique to parity games. We begin with a mu-calculus characterisation of the winning region. This formula alternates greatest and least fixed point operators over a kind of reachability formula. Hence, we can use a version of our reachability algorithm, and modifications of the Buchi techniques, to compute the required result. The main advantages of this approach compared to existing techniques due to Cachat, Serre and Vardi et al. are that it is direct and that it is not immediately exponential in the number of control states, although the worst-case complexity remains the same." @default.
- W2117501670 created "2016-06-24" @default.
- W2117501670 creator A5083664380 @default.
- W2117501670 date "2009-01-01" @default.
- W2117501670 modified "2023-09-23" @default.
- W2117501670 title "Saturation methods for global model-checking pushdown systems" @default.
- W2117501670 cites W119381390 @default.
- W2117501670 cites W1480220904 @default.
- W2117501670 cites W1480600454 @default.
- W2117501670 cites W1489227129 @default.
- W2117501670 cites W1489630028 @default.
- W2117501670 cites W1489794625 @default.
- W2117501670 cites W1489854863 @default.
- W2117501670 cites W1491036809 @default.
- W2117501670 cites W1491593738 @default.
- W2117501670 cites W1492575876 @default.
- W2117501670 cites W1493367105 @default.
- W2117501670 cites W1496412704 @default.
- W2117501670 cites W1501776715 @default.
- W2117501670 cites W1503627878 @default.
- W2117501670 cites W1504054062 @default.
- W2117501670 cites W1505355949 @default.
- W2117501670 cites W1506194499 @default.
- W2117501670 cites W1508260233 @default.
- W2117501670 cites W1508555606 @default.
- W2117501670 cites W1512310098 @default.
- W2117501670 cites W1513485037 @default.
- W2117501670 cites W1517623691 @default.
- W2117501670 cites W1518696294 @default.
- W2117501670 cites W1520729440 @default.
- W2117501670 cites W1521221596 @default.
- W2117501670 cites W1522223086 @default.
- W2117501670 cites W1526796383 @default.
- W2117501670 cites W1533781805 @default.
- W2117501670 cites W1556462035 @default.
- W2117501670 cites W1556566737 @default.
- W2117501670 cites W1557750304 @default.
- W2117501670 cites W1558480805 @default.
- W2117501670 cites W1559784852 @default.
- W2117501670 cites W1560050980 @default.
- W2117501670 cites W1563374799 @default.
- W2117501670 cites W1564221482 @default.
- W2117501670 cites W157185084 @default.
- W2117501670 cites W1576751546 @default.
- W2117501670 cites W1580879785 @default.
- W2117501670 cites W1585989904 @default.
- W2117501670 cites W1589224558 @default.
- W2117501670 cites W1590102271 @default.
- W2117501670 cites W1590315663 @default.
- W2117501670 cites W1591136029 @default.
- W2117501670 cites W1592840252 @default.
- W2117501670 cites W1595179046 @default.
- W2117501670 cites W1598998541 @default.
- W2117501670 cites W1600632836 @default.
- W2117501670 cites W1630483081 @default.
- W2117501670 cites W1630801303 @default.
- W2117501670 cites W1658032593 @default.
- W2117501670 cites W1725438563 @default.
- W2117501670 cites W174979378 @default.
- W2117501670 cites W1758177211 @default.
- W2117501670 cites W1802033981 @default.
- W2117501670 cites W1809956864 @default.
- W2117501670 cites W1816620374 @default.
- W2117501670 cites W1827592073 @default.
- W2117501670 cites W1970999740 @default.
- W2117501670 cites W1971416129 @default.
- W2117501670 cites W1971835879 @default.
- W2117501670 cites W1972164030 @default.
- W2117501670 cites W1972478730 @default.
- W2117501670 cites W1975653808 @default.
- W2117501670 cites W1975657455 @default.
- W2117501670 cites W1977601940 @default.
- W2117501670 cites W1979853884 @default.
- W2117501670 cites W1984451181 @default.
- W2117501670 cites W1990609140 @default.
- W2117501670 cites W2002644257 @default.
- W2117501670 cites W2003227046 @default.
- W2117501670 cites W2006265470 @default.
- W2117501670 cites W2011495892 @default.
- W2117501670 cites W2017759899 @default.
- W2117501670 cites W2020520119 @default.
- W2117501670 cites W2023808162 @default.
- W2117501670 cites W2035561341 @default.
- W2117501670 cites W2045826397 @default.
- W2117501670 cites W2051856671 @default.
- W2117501670 cites W2060345611 @default.
- W2117501670 cites W2061438988 @default.
- W2117501670 cites W2067672151 @default.
- W2117501670 cites W2073412815 @default.
- W2117501670 cites W2077698590 @default.
- W2117501670 cites W2082000355 @default.
- W2117501670 cites W2083398633 @default.
- W2117501670 cites W2083896385 @default.
- W2117501670 cites W2087756506 @default.
- W2117501670 cites W2090800764 @default.
- W2117501670 cites W2099529102 @default.
- W2117501670 cites W2101321886 @default.
- W2117501670 cites W2101605758 @default.
- W2117501670 cites W2101936540 @default.
- W2117501670 cites W2102644483 @default.