Matches in SemOpenAlex for { <https://semopenalex.org/work/W2117570623> ?p ?o ?g. }
- W2117570623 endingPage "2068" @default.
- W2117570623 startingPage "2068" @default.
- W2117570623 abstract "Linear and non-linear models have been extensively utilised for the estimation of net and metabolisable energy requirements and for the estimation of the efficiencies of utilising dietary energy for maintenance and tissue gain. In growing animals, biological principles imply that energy retention rate is non-linearly related to the energy intake level because successive increments in energy intake above maintenance result in diminishing returns for tissue energy accretion. Heat production in growing cattle has been traditionally described by logarithmic regression and exponential models. The objective of the present study was to develop Bayesian models of energy retention and heat production in growing cattle using parametric and non-parametric techniques. Parametric models were used to represent models traditionally employed to describe energy use in growing steers and heifers whereas the non-parametric approach was introduced to describe energy utilisation while accounting for non-linearities without specifying a particular functional form. The Bayesian framework was used to incorporate prior knowledge of bioenergetics on tissue retention and heat production and to estimate net and metabolisable energy requirements (NEM and MEM, respectively), and the partial efficiencies of utilising dietary metabolisable energy for maintenance (km) and tissue energy gain (kg). The database used for the study consisted of 719 records of indirect calorimetry on steers and non-pregnant, non-lactating heifers. The NEM was substantially larger in energy retention models (ranged from 0.40 to 0.50 MJ/kg BW0.75.day) than were NEM estimates from heat-production models (ranged from 0.29 to 0.49 MJ/kg BW0.75.day). Similarly, km was also larger in energy retention models than in heat production models. These differences are explained by the nature of y-intercepts (NEM) in these two models. Energy retention models estimate fasting catabolism as the y-intercept, while heat production models estimate fasting heat production. Conversely, MEM was virtually identical in all models and approximately equal to 0.53 MJ/kg BW0.75.day in this database." @default.
- W2117570623 created "2016-06-24" @default.
- W2117570623 creator A5002208678 @default.
- W2117570623 creator A5026427845 @default.
- W2117570623 creator A5053683548 @default.
- W2117570623 creator A5056149528 @default.
- W2117570623 creator A5062879293 @default.
- W2117570623 creator A5087502190 @default.
- W2117570623 date "2014-01-01" @default.
- W2117570623 modified "2023-09-26" @default.
- W2117570623 title "Bayesian analysis of energy balance data from growing cattle using parametric and non-parametric modelling" @default.
- W2117570623 cites W1494281971 @default.
- W2117570623 cites W1517555081 @default.
- W2117570623 cites W1575630396 @default.
- W2117570623 cites W158306839 @default.
- W2117570623 cites W1585663123 @default.
- W2117570623 cites W1587094587 @default.
- W2117570623 cites W1912998182 @default.
- W2117570623 cites W1975590314 @default.
- W2117570623 cites W199437560 @default.
- W2117570623 cites W1994706487 @default.
- W2117570623 cites W2027106381 @default.
- W2117570623 cites W203629086 @default.
- W2117570623 cites W2045656233 @default.
- W2117570623 cites W2046518005 @default.
- W2117570623 cites W2053951030 @default.
- W2117570623 cites W2057765075 @default.
- W2117570623 cites W2062809993 @default.
- W2117570623 cites W2063835887 @default.
- W2117570623 cites W2079680420 @default.
- W2117570623 cites W2084452674 @default.
- W2117570623 cites W2090434763 @default.
- W2117570623 cites W2094152734 @default.
- W2117570623 cites W2106675691 @default.
- W2117570623 cites W2114783028 @default.
- W2117570623 cites W2117589298 @default.
- W2117570623 cites W2140984855 @default.
- W2117570623 cites W2143510389 @default.
- W2117570623 cites W2148534890 @default.
- W2117570623 cites W2148830981 @default.
- W2117570623 cites W2149372858 @default.
- W2117570623 cites W2161640056 @default.
- W2117570623 cites W2165898316 @default.
- W2117570623 cites W2178430163 @default.
- W2117570623 cites W22304512 @default.
- W2117570623 cites W2407593649 @default.
- W2117570623 cites W2413080308 @default.
- W2117570623 cites W2601486084 @default.
- W2117570623 cites W2757219142 @default.
- W2117570623 cites W3145424792 @default.
- W2117570623 cites W577274971 @default.
- W2117570623 cites W820140842 @default.
- W2117570623 doi "https://doi.org/10.1071/an14535" @default.
- W2117570623 hasPublicationYear "2014" @default.
- W2117570623 type Work @default.
- W2117570623 sameAs 2117570623 @default.
- W2117570623 citedByCount "6" @default.
- W2117570623 countsByYear W21175706232016 @default.
- W2117570623 countsByYear W21175706232017 @default.
- W2117570623 countsByYear W21175706232018 @default.
- W2117570623 countsByYear W21175706232019 @default.
- W2117570623 crossrefType "journal-article" @default.
- W2117570623 hasAuthorship W2117570623A5002208678 @default.
- W2117570623 hasAuthorship W2117570623A5026427845 @default.
- W2117570623 hasAuthorship W2117570623A5053683548 @default.
- W2117570623 hasAuthorship W2117570623A5056149528 @default.
- W2117570623 hasAuthorship W2117570623A5062879293 @default.
- W2117570623 hasAuthorship W2117570623A5087502190 @default.
- W2117570623 hasBestOaLocation W21175706232 @default.
- W2117570623 hasConcept C105795698 @default.
- W2117570623 hasConcept C117251300 @default.
- W2117570623 hasConcept C139719470 @default.
- W2117570623 hasConcept C140793950 @default.
- W2117570623 hasConcept C162324750 @default.
- W2117570623 hasConcept C186370098 @default.
- W2117570623 hasConcept C18903297 @default.
- W2117570623 hasConcept C24574437 @default.
- W2117570623 hasConcept C2777423268 @default.
- W2117570623 hasConcept C2778348673 @default.
- W2117570623 hasConcept C33923547 @default.
- W2117570623 hasConcept C39432304 @default.
- W2117570623 hasConcept C86803240 @default.
- W2117570623 hasConceptScore W2117570623C105795698 @default.
- W2117570623 hasConceptScore W2117570623C117251300 @default.
- W2117570623 hasConceptScore W2117570623C139719470 @default.
- W2117570623 hasConceptScore W2117570623C140793950 @default.
- W2117570623 hasConceptScore W2117570623C162324750 @default.
- W2117570623 hasConceptScore W2117570623C186370098 @default.
- W2117570623 hasConceptScore W2117570623C18903297 @default.
- W2117570623 hasConceptScore W2117570623C24574437 @default.
- W2117570623 hasConceptScore W2117570623C2777423268 @default.
- W2117570623 hasConceptScore W2117570623C2778348673 @default.
- W2117570623 hasConceptScore W2117570623C33923547 @default.
- W2117570623 hasConceptScore W2117570623C39432304 @default.
- W2117570623 hasConceptScore W2117570623C86803240 @default.
- W2117570623 hasIssue "12" @default.
- W2117570623 hasLocation W21175706231 @default.
- W2117570623 hasLocation W21175706232 @default.